Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Family feuds – why close relatives keep their distance in the animal kingdom

28.05.2008
Mammals cannot share their habitat with closely related species because the need for the same kind of food and shelter would lead them to compete to the death, according to new research out today (28 May 2008) in Proceedings of the Royal Society B: Biological Sciences.

The team behind the study says this is important because the retreat of natural habitats like rainforests caused by habitat destruction and climate change could inadvertently force closely-related species to live closer together than before.

Lead author of the study Natalie Cooper, a postgraduate student in Imperial College London’s Department of Life Sciences, explains: “Mammal species that share a recent common ancestor have similar needs in terms of food and other resources. Our study shows that this has naturally resulted in closely related species keeping their distance from each other in the wild. Without this separation, one species outcompetes the other.

“The danger is that if mankind’s reduction of natural habitats throws these close relatives together in small geographical areas they could struggle to survive.”

The new research focused on communities of three different types of mammals: new world monkeys (including marmosets, tamarins and spider monkeys), possums, and ground squirrels (including marmots, prairie dogs and chipmunks).

Ms Cooper and her colleagues compared data from a ‘family tree’ showing the evolution of all mammal species on the planet, with checklists of which mammal species are found where. They discovered that in the case of these monkeys, squirrels and possums, close evolutionary relatives do not tend to live in communities with one another.

For example, in Badlands National Park, South Dakota USA, four species of ground squirrel, including the black tailed prairie dog, live alongside each other and other distantly related squirrels in a community. However, Gunnison’s prairie dog, a close relative of the black-tailed species, was notably absent from the community, although data showed it lived within just 10km of the National Park and in very similar habitats.

This idea that closely related species would be unlikely to be found together because they compete ferociously was first put forward by Charles Darwin in 1859. This study provides the most evidence so far for Darwin’s prediction, thanks to the new complete ‘family tree’ for mammals, developed by Imperial biologists last year, and new comprehensive data on the location and make-up of different mammal communities worldwide.

The research team hope that their findings could help conservationists have a better understanding of the possible problems that mammal species could encounter if their habitats are depleted and they are forced to live in close proximity to their close evolutionary relatives.

The research was funded by the Natural Environment Research Council.

Danielle Reeves | alfa
Further information:
http://www.nerc.ac.uk
http://www.imperial.ac.uk

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>