Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Family feuds – why close relatives keep their distance in the animal kingdom

28.05.2008
Mammals cannot share their habitat with closely related species because the need for the same kind of food and shelter would lead them to compete to the death, according to new research out today (28 May 2008) in Proceedings of the Royal Society B: Biological Sciences.

The team behind the study says this is important because the retreat of natural habitats like rainforests caused by habitat destruction and climate change could inadvertently force closely-related species to live closer together than before.

Lead author of the study Natalie Cooper, a postgraduate student in Imperial College London’s Department of Life Sciences, explains: “Mammal species that share a recent common ancestor have similar needs in terms of food and other resources. Our study shows that this has naturally resulted in closely related species keeping their distance from each other in the wild. Without this separation, one species outcompetes the other.

“The danger is that if mankind’s reduction of natural habitats throws these close relatives together in small geographical areas they could struggle to survive.”

The new research focused on communities of three different types of mammals: new world monkeys (including marmosets, tamarins and spider monkeys), possums, and ground squirrels (including marmots, prairie dogs and chipmunks).

Ms Cooper and her colleagues compared data from a ‘family tree’ showing the evolution of all mammal species on the planet, with checklists of which mammal species are found where. They discovered that in the case of these monkeys, squirrels and possums, close evolutionary relatives do not tend to live in communities with one another.

For example, in Badlands National Park, South Dakota USA, four species of ground squirrel, including the black tailed prairie dog, live alongside each other and other distantly related squirrels in a community. However, Gunnison’s prairie dog, a close relative of the black-tailed species, was notably absent from the community, although data showed it lived within just 10km of the National Park and in very similar habitats.

This idea that closely related species would be unlikely to be found together because they compete ferociously was first put forward by Charles Darwin in 1859. This study provides the most evidence so far for Darwin’s prediction, thanks to the new complete ‘family tree’ for mammals, developed by Imperial biologists last year, and new comprehensive data on the location and make-up of different mammal communities worldwide.

The research team hope that their findings could help conservationists have a better understanding of the possible problems that mammal species could encounter if their habitats are depleted and they are forced to live in close proximity to their close evolutionary relatives.

The research was funded by the Natural Environment Research Council.

Danielle Reeves | alfa
Further information:
http://www.nerc.ac.uk
http://www.imperial.ac.uk

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>