Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies food-related clock in the brain

27.05.2008
Findings could help travelers, shift workers adjust to changes in time zones and overnight schedules

In investigating the intricacies of the body’s biological rhythms, scientists at Beth Israel Deaconess Medical Center (BIDMC) have discovered the existence of a “food-related clock” which can supersede the “light-based” master clock that serves as the body’s primary timekeeper.

The findings, which appear in the May 23 issue of the journal Science, help explain how animals adapt their circadian rhythms in order to avoid starvation, and suggest that by adjusting eating schedules, humans too can better cope with changes in time zones and nighttime schedules that leave them feeling groggy and jet-lagged.

“For a small mammal, finding food on a daily basis is a critical mission,” explains the study’s senior author Clifford Saper, MD, PhD, Chairman of the Department of Neurology at BIDMC and James Jackson Putnam Professor of Neurology at Harvard Medical School. “Even a few days of starvation is a common threat in natural environments and may result in the animal’s death.”

The suprachiasmatic nucleus (SCN), a group of cells in the brain’s hypothalamus, serves as the body’s primary biological clock. The SCN receives signals about the light-dark cycle through the visual system, and passes that information along to another cell group in the hypothalamus known as the dorsomedial nucleus (DMH). The DMH then organizes sleep-wake cycles, as well as cycles of activity, feeding and hormones.

“When food is readily available,” explains Saper, “this system works extremely well. Light signals from the retina help establish the animals’ circadian rhythms to the standard day-night cycle.” But, if food is not available during the normal wake period, animals need to be able to adapt to food that is available when they are ordinarily asleep.

In order to survive, animals appear to have developed a secondary “food-related” master clock. “This new timepiece enables animals to switch their sleep and wake schedules in order to maximize their opportunity of finding food,” notes Saper, who together with lead author Patrick Fuller, PhD, HMS Instructor in Neurology and coauthor Jun Lu, MD, PhD, HMS Assistant Professor of Neurology, set out to determine exactly where this clock was located.

“In addition to the oscillator cells in the SCN, there are other oscillator cells in the brain as well as in peripheral tissues like the stomach and liver that contribute to the development of animals’ food-based circadian rhythms,” says Saper. “Dissecting this large intertwined system posed a challenge.”

To overcome this obstacle, the authors used a genetically arrhythmic mouse in which one of the key genes for the biological clock, BMAL1, was disabled. They next placed the gene for BMAL1 into a viral vector which enabled them to restore a functional biological clock to only one spot in the brain at a time. Through this step-by-step analysis, the authors uncovered the feeding entrained clock in the DMH.

“We discovered that a single cycle of starvation followed by refeeding turns on the clock, so that it effectively overrides the suprachiasmatic nucleus and hijacks all of the circadian rhythms onto a new time zone that corresponds with food availability,” says Saper. And, he adds, the implications for travelers and shift workers are promising.

“Modern day humans may be able to use these findings in an adaptive way. If, for example, you are traveling from the U.S. to Japan, you are forced to adjust to an 11-hour time difference,” he notes. “Because the body’s biological clock can only shift a small amount each day, it takes the average person about a week to adjust to the new time zone. And, by then, it’s often time to turn around and come home.”

But, he adds, by adapting eating schedules, a traveler might be able to engage his second “feeding” clock and adjust more quickly to the new time zone.

“A period of fasting with no food at all for about 16 hours is enough to engage this new clock,” says Saper. “So, in this case, simply avoiding any food on the plane, and then eating as soon as you land, should help you to adjust – and avoid some of the uncomfortable feelings of jet lag.”

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>