Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pacific coast turning more acidic

26.05.2008
An international team of scientists surveying the waters of the continental shelf off the West Coast of North America has discovered for the first time high levels of acidified ocean water within 20 miles of the shoreline, raising concern for marine ecosystems from Canada to Mexico.

Researchers aboard the Wecoma, an Oregon State University research vessel, also discovered that this corrosive, acidified water that is being “upwelled” seasonally from the deeper ocean is probably 50 years old, suggesting that future ocean acidification levels will increase since atmospheric levels of carbon dioxide have increased rapidly over the past half century.

Results of the study were published this week in Science Express.

“When the upwelled water was last at the surface, it was exposed to an atmosphere with much lower CO2 (carbon dioxide) levels than today’s,” pointed out Burke Hales, an associate professor in the College of Oceanic and Atmospheric Sciences at Oregon State University and an author on the Science study. “The water that will upwell off the coast in future years already is making its undersea trek toward us, with ever-increasing levels of carbon dioxide and acidity.

“The coastal ocean acidification train has left the station,” Hales added, “and there not much we can do to derail it.”

Scientists have become increasingly concerned about ocean acidification in recent years, as the world’s oceans absorb growing levels of carbon dioxide from the atmosphere. When that CO2 mixes into the ocean water, it forms carbonic acid that has a corrosive effect on aragonite – the calcium carbonate mineral that forms the shells of many marine creatures.

Certain species of phytoplankton and zooplankton, which are critical to the marine food web, may also be susceptible, the scientists point out, although other species of open-ocean phytoplankton have calcite shells that are not as sensitive.

“There is much research that needs to be done about the biological implications of ocean acidification,” Hales said. “We now have a fairly good idea of how the chemistry works.”

Increasing levels of carbon dioxide in the atmosphere are a product of the industrial revolution and consumption of fossil fuels. Fifty years ago, atmospheric CO2 levels were roughly 310 parts per million – the highest level to that point that the Earth has experienced in the last million years, according to analyses of gas trapped in ice cores and other research.

During the past 50 years, atmospheric CO2 levels have gradually increased to a level of about 380 parts per million.

These atmospheric CO2 levels form the beginning baseline for carbon levels in ocean water. As water moves away from the surface toward upwelling areas, respiration increases the CO2 and nutrient levels of the water. As that nutrient-rich water is upwelled, it triggers additional phytoplankton blooms that continue the process.

There is a strong correlation between recent hypoxia events off the Northwest coast and increasing acidification, Hales said.

“The hypoxia is caused by persistent upwelling that produces an over-abundance of phytoplankton,” Hales pointed out. “When the system works, the upwelling winds subside for a day or two every couple of weeks in what we call a ‘relaxation event’ that allows that buildup of decomposing organic matter to be washed out to the deep ocean.

“But in recent years, especially in 2002 and 2006, there were few if any of these relaxation breaks in the upwelling and the phytoplankton blooms were enormous,” Hales added. “When the material produced by these blooms decomposes, it puts more CO2 into the system and increases the acidification.”

The research team used OSU’s R/V Wecoma to sample water off the coast from British Columbia to Mexico. The researchers found that the 50-year-old upwelled water had CO2 levels of 900 to 1,000 parts per million, making it “right on the edge of solubility” for calcium carbonate-shelled aragonites, Hales said.

“If we’re right on the edge now based on a starting point of 310 parts per million,” Hales said, “we may have to assume that CO2 levels will gradually increase through the next half century as the water that originally was exposed to increasing levels of atmospheric carbon dioxide is cycled through the system. Whether those elevated levels of carbon dioxide tip the scale for aragonites remains to be seen.

“But if we somehow got our atmospheric CO2 level to immediately quit increasing,” Hales added, “we’d still have increasingly acidified ocean water to contend with over the next 50 years.”

Hales says it is too early to predict the biological response to increasing ocean acidification off North America’s West Coast. There already is a huge seasonal variation in the ocean acidity based on phytoplankton blooms, upwelling patterns, water movement and natural terrain. Upwelled water can be pushed all the way onto shore, he said, and barnacles, clams and other aragonites have likely already been exposed to corrosive waters for a period of time.

They may be adapting, he said, or they may already be suffering consequences that scientists have not yet determined.

“You can’t just splash some acid on a clamshell and replicate the range of conditions the Pacific Ocean presents,” Hales said. “This points out the need for cross-disciplinary research. Luckily, we have a fantastic laboratory right off the central Oregon coast that will allow us to look at the implications of ocean acidification.”

Burke Hales | EurekAlert!
Further information:
http://www.coas.oregonstate.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>