Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pacific coast turning more acidic

26.05.2008
An international team of scientists surveying the waters of the continental shelf off the West Coast of North America has discovered for the first time high levels of acidified ocean water within 20 miles of the shoreline, raising concern for marine ecosystems from Canada to Mexico.

Researchers aboard the Wecoma, an Oregon State University research vessel, also discovered that this corrosive, acidified water that is being “upwelled” seasonally from the deeper ocean is probably 50 years old, suggesting that future ocean acidification levels will increase since atmospheric levels of carbon dioxide have increased rapidly over the past half century.

Results of the study were published this week in Science Express.

“When the upwelled water was last at the surface, it was exposed to an atmosphere with much lower CO2 (carbon dioxide) levels than today’s,” pointed out Burke Hales, an associate professor in the College of Oceanic and Atmospheric Sciences at Oregon State University and an author on the Science study. “The water that will upwell off the coast in future years already is making its undersea trek toward us, with ever-increasing levels of carbon dioxide and acidity.

“The coastal ocean acidification train has left the station,” Hales added, “and there not much we can do to derail it.”

Scientists have become increasingly concerned about ocean acidification in recent years, as the world’s oceans absorb growing levels of carbon dioxide from the atmosphere. When that CO2 mixes into the ocean water, it forms carbonic acid that has a corrosive effect on aragonite – the calcium carbonate mineral that forms the shells of many marine creatures.

Certain species of phytoplankton and zooplankton, which are critical to the marine food web, may also be susceptible, the scientists point out, although other species of open-ocean phytoplankton have calcite shells that are not as sensitive.

“There is much research that needs to be done about the biological implications of ocean acidification,” Hales said. “We now have a fairly good idea of how the chemistry works.”

Increasing levels of carbon dioxide in the atmosphere are a product of the industrial revolution and consumption of fossil fuels. Fifty years ago, atmospheric CO2 levels were roughly 310 parts per million – the highest level to that point that the Earth has experienced in the last million years, according to analyses of gas trapped in ice cores and other research.

During the past 50 years, atmospheric CO2 levels have gradually increased to a level of about 380 parts per million.

These atmospheric CO2 levels form the beginning baseline for carbon levels in ocean water. As water moves away from the surface toward upwelling areas, respiration increases the CO2 and nutrient levels of the water. As that nutrient-rich water is upwelled, it triggers additional phytoplankton blooms that continue the process.

There is a strong correlation between recent hypoxia events off the Northwest coast and increasing acidification, Hales said.

“The hypoxia is caused by persistent upwelling that produces an over-abundance of phytoplankton,” Hales pointed out. “When the system works, the upwelling winds subside for a day or two every couple of weeks in what we call a ‘relaxation event’ that allows that buildup of decomposing organic matter to be washed out to the deep ocean.

“But in recent years, especially in 2002 and 2006, there were few if any of these relaxation breaks in the upwelling and the phytoplankton blooms were enormous,” Hales added. “When the material produced by these blooms decomposes, it puts more CO2 into the system and increases the acidification.”

The research team used OSU’s R/V Wecoma to sample water off the coast from British Columbia to Mexico. The researchers found that the 50-year-old upwelled water had CO2 levels of 900 to 1,000 parts per million, making it “right on the edge of solubility” for calcium carbonate-shelled aragonites, Hales said.

“If we’re right on the edge now based on a starting point of 310 parts per million,” Hales said, “we may have to assume that CO2 levels will gradually increase through the next half century as the water that originally was exposed to increasing levels of atmospheric carbon dioxide is cycled through the system. Whether those elevated levels of carbon dioxide tip the scale for aragonites remains to be seen.

“But if we somehow got our atmospheric CO2 level to immediately quit increasing,” Hales added, “we’d still have increasingly acidified ocean water to contend with over the next 50 years.”

Hales says it is too early to predict the biological response to increasing ocean acidification off North America’s West Coast. There already is a huge seasonal variation in the ocean acidity based on phytoplankton blooms, upwelling patterns, water movement and natural terrain. Upwelled water can be pushed all the way onto shore, he said, and barnacles, clams and other aragonites have likely already been exposed to corrosive waters for a period of time.

They may be adapting, he said, or they may already be suffering consequences that scientists have not yet determined.

“You can’t just splash some acid on a clamshell and replicate the range of conditions the Pacific Ocean presents,” Hales said. “This points out the need for cross-disciplinary research. Luckily, we have a fantastic laboratory right off the central Oregon coast that will allow us to look at the implications of ocean acidification.”

Burke Hales | EurekAlert!
Further information:
http://www.coas.oregonstate.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>