Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuromuscular activation by means of vibrations

23.05.2008
A researcher from the Universidad Politécnica de Madrid has collaborated with the University of Granada in the development of a research study on the possible effects of vibrations as a mean of neuromuscular activation to improve jumping performance. The results suggest that the effect could be dependant on the level of training.

Lately, new technologies applied to improving performance and health have experienced a booming rise. One of those has been the use of vibrating platforms to improve athletic performance in general and muscular strength in particular.

The application of mechanical vibrations through technologies like vibrating platforms has been proposed by many recent studies as tool capable of increasing muscular performance. Nevertheless, the results offered are contradictory. This has motivated the group EFFECTS-262 of the Universidad de Granada, in collaboration with the Facultad de Ciencias de la Actividad Física y del Deporte at the Universidad Politécnica de Madrid, to try to clear this situation by evaluating the possible effects of a short vibration on the jumping abilities of young adults of both sexes.

A group of 114 university students, 37 of them male and 77 female, with an average of 19.6 years of age has been used as test subjects for an experiment to evaluate the height reached by the subjects when jumping, and compare the results with the height reached after a short stimulation by the vibration platform.

The main parameters to be controlled, since they accurately represent the characteristics of the vibration training, are: the frequency of the vibrations (number of vibration cycles per second, measured in hertz Hz), the time duration of the training measured in seconds or minutes, the amplitude of movement of the vibration source measured in millimeters and the vibration

charge that is generated (g)

The results of the study indicate that vibration stimuli ranging from 20 to 30 Hz and lasting from 90 to 120 seconds would generate a short decrease in the jumping heights achieved immediately after the application of the stimulation. However, such decrease seems to completely disappear after a short resting period. The test subjects recovered their normal jumping ability after a minute of recovery.

The researchers believe that vibration stimulation could cause a local temporal muscular fatigue that would be the cause of the decrease on the heights reached.

If the results from this study are compared with those presented by experiments with a similar focus, it could be suggested that such stimulation has stronger effects proportional to the level of the training that the subjects are accustomed to. The inclusion of test subjects with low training levels in this study* could account for the decrease in jumping heights. The researchers involved concluded that in subjects that are not actively training, it is convenient to have resting periods of at least a minute after stimulation before jumping to their full potential.

Ciencia y Sociedad | alfa
Further information:
http://www.jssm.org/vol6/n4/28/v6n4-28pdf.pdf

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>