Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuromuscular activation by means of vibrations

23.05.2008
A researcher from the Universidad Politécnica de Madrid has collaborated with the University of Granada in the development of a research study on the possible effects of vibrations as a mean of neuromuscular activation to improve jumping performance. The results suggest that the effect could be dependant on the level of training.

Lately, new technologies applied to improving performance and health have experienced a booming rise. One of those has been the use of vibrating platforms to improve athletic performance in general and muscular strength in particular.

The application of mechanical vibrations through technologies like vibrating platforms has been proposed by many recent studies as tool capable of increasing muscular performance. Nevertheless, the results offered are contradictory. This has motivated the group EFFECTS-262 of the Universidad de Granada, in collaboration with the Facultad de Ciencias de la Actividad Física y del Deporte at the Universidad Politécnica de Madrid, to try to clear this situation by evaluating the possible effects of a short vibration on the jumping abilities of young adults of both sexes.

A group of 114 university students, 37 of them male and 77 female, with an average of 19.6 years of age has been used as test subjects for an experiment to evaluate the height reached by the subjects when jumping, and compare the results with the height reached after a short stimulation by the vibration platform.

The main parameters to be controlled, since they accurately represent the characteristics of the vibration training, are: the frequency of the vibrations (number of vibration cycles per second, measured in hertz Hz), the time duration of the training measured in seconds or minutes, the amplitude of movement of the vibration source measured in millimeters and the vibration

charge that is generated (g)

The results of the study indicate that vibration stimuli ranging from 20 to 30 Hz and lasting from 90 to 120 seconds would generate a short decrease in the jumping heights achieved immediately after the application of the stimulation. However, such decrease seems to completely disappear after a short resting period. The test subjects recovered their normal jumping ability after a minute of recovery.

The researchers believe that vibration stimulation could cause a local temporal muscular fatigue that would be the cause of the decrease on the heights reached.

If the results from this study are compared with those presented by experiments with a similar focus, it could be suggested that such stimulation has stronger effects proportional to the level of the training that the subjects are accustomed to. The inclusion of test subjects with low training levels in this study* could account for the decrease in jumping heights. The researchers involved concluded that in subjects that are not actively training, it is convenient to have resting periods of at least a minute after stimulation before jumping to their full potential.

Ciencia y Sociedad | alfa
Further information:
http://www.jssm.org/vol6/n4/28/v6n4-28pdf.pdf

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>