Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon nanotubes that look like asbestos, behave like asbestos

21.05.2008
New study shows inhaling long, thin carbon nanotubes may result in asbestos-related disease

A major study published today in Nature Nanotechnology suggests some forms of carbon nanotubes – a poster child for the “nanotechnology revolution” – could be as harmful as asbestos if inhaled in sufficient quantities.

The study used established methods to see if specific types of nanotubes have the potential to cause mesothelioma — a cancer of the lung lining that can take 30-40 years to appear following exposure. The results show that long, thin multi-walled carbon nanotubes that look like asbestos fibers, behave like asbestos fibers.

Discovered nearly 20 years ago, carbon nanotubes have been described as the wonder material of the 21st Century. Light as plastic and stronger that steel, they are being developed for use in new drugs, energy-efficient batteries and futuristic electronics. But since their discovery, questions have been raised about whether some of these nanoscale materials may cause harm and undermine a nascent market for all types of carbon nanotubes, including multi- and single-walled carbon nanotubes. Leading forecasting firms say sales of all nanotubes could reach $2 billion annually within the next four to seven years, according to an article in the U.S. publication Chemical & Engineering News.

“This study is exactly the kind of strategic, highly focused research needed to ensure the safe and responsible development of nanotechnology,” says Andrew Maynard, Chief Science Advisor to the Project on Emerging Nanotechnologies and a co-author on the paper. “It looks at a specific nanoscale material expected to have widespread commercial applications and asks specific questions about a specific health hazard. Even though scientists have been raising concerns about the safety of long, thin carbon nanotubes for over a decade, none of the research needs in the current U.S. federal nanotechnology environment, health and safety risk research strategy address this question.”

Widespread exposure to asbestos has been described as the worst occupational health disaster in U.S. history and the cost of asbestos-related disease is expected to exceed $200 billion, according to major U.S. think tank RAND Corporation.

Anthony Seaton, MD, a co-author on the paper and a professor emeritus at the University of Aberdeen in the United Kingdom, says, “The toll of asbestos-related cancer, first noticed in the 1950s and 1960s, is likely to continue for several more decades even though usage reduced rapidly some 25 years ago. While there are reasons to suppose that nanotubes can be used safely, this will depend on appropriate steps being taken to prevent them from being inhaled in the places they are manufactured, used and ultimately disposed of. Such steps should be based on research into exposure and risk prevention, leading to regulation of their use. Following this study, the results of which were foreseen by the Royal Society in the U.K. in 2004, we can no longer delay investing in such research.”

Researchers, led by Professor Kenneth Donaldson at the University of Edinburgh in the United Kingdom, examined the potential for long and short carbon nanotubes, long and short asbestos fibers, and carbon black to cause pathological responses known to be precursors of mesothelioma. Material was injected into the abdominal cavity of mice — a sensitive predictor of long fiber response in the lung lining.

“The results were clear,” says Donaldson. “Long, thin carbon nanotubes showed the same effects as long, thin asbestos fibers.”

Asbestos fibers are harmful because they are thin enough to penetrate deep into the lungs, but sufficiently long to confound the lungs’ built-in clearance mechanisms for getting rid of particles.

Donaldson stresses there are still pieces of the puzzle to fill in. “We still don’t know whether carbon nanotubes will become airborne and be inhaled, or whether, if they do reach the lungs, they can work their way to the sensitive outer lining. But if they do get there in sufficient quantity, there is a chance that some people will develop cancer—perhaps decades after breathing the stuff,” states Donaldson.

There is a silver lining to this research. According to Donaldson, “Short or curly carbon nanotubes did not behave like asbestos, and by knowing the possible dangers of long, thin carbon nanotubes, we can work to control them. It’s a good news story, not a bad one. It shows that carbon nanotubes and their products could be made to be safe.”

But Donaldson added that the present study only tested for fiber-like behavior and did not exonerate carbon nanotubes from damaging the lungs in other ways. “More research is still needed if we are to understand how to use these materials as safely as possible,” he notes.

Carbon nanotubes are atom-thick sheets of graphite formed into cylinders. They may be formed from a single layer of graphite or they may consist of multiple concentric layers of graphite, resulting in multi-walled carbon nanotubes. While the diameter of a nanotube can vary from a few nanometers up to tens of nanometers, they can be hundreds or even thousands of nanometers long. Carbon nanotubes come in many forms, with different shapes, different atomic arrangements, and varying amounts and types of added chemicals—all of which affect their properties and might influence their impact on human health and the environment.

“This is a wakeup call for nanotechnology in general and carbon nanotubes in particular,” says Maynard. “As a society, we cannot afford not to exploit this incredible material, but neither can we afford to get it wrong—as we did with asbestos.”

Colin Finan | EurekAlert!
Further information:
http://www.wilsoncenter.org
http://www.cir.med.ed.ac.uk/

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>