Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy crops take a roasting

21.05.2008
A process used to roast coffee beans could give Britain's biomass a power boost, increasing the energy content of some of the UK’s leading energy crops by up to 20 per cent.

The study, carried out by engineers from the University of Leeds, examined the combustion behaviour of crops grown specifically for energy creation when put through a mild thermal process called ‘torrefaction’ – more usually associated with coffee production.

Torrefaction is increasingly seen as a desirable treatment for biomass because it creates a solid product which is easier to store, transport and mill than raw biomass.

The study examined the energy crops willow, canary grass and agricultural residue wheat straw to see what happened when they went through the torrefaction process and how they behaved at a range of temperatures when they were heated to create an energy-enhanced fuel.

Results showed that the treated materials needed less time and energy to heat to burning point, and also that they offered increased energy yields upon burning.

Willow emerged as having the most favourable properties, in that it retained more of its mass in the torrefaction process and also performed best in terms of its energy yield. As an example, willow was shown to have an 86 per cent energy yield, compared with 77 per cent for wheat straw and 78 per cent for reed canary grass.

“Raw biomass takes up a lot of space and has a low energy density which makes it costly – environmentally and economically – to transport. Plus you need more of it than say, coal, to produce energy efficiently,” says Professor Jenny Jones who worked on this study with PhD student Toby Bridgeman.

“Torrefaction is not currently used in the UK in either the agricultural or the energy sectors,” says Bridgeman. “But our paper shows that it has a lot of benefits, besides those to do with fuel handling, so we feel it’s definitely something we’d like to explore further.”

This research was supported by the Supergen Bioenergy Consortium, an initiative created by the Engineering and Physical Sciences Research Council as part of its commitment to funding research which will help the UK reach EU targets for the reduction of CO2 emissions and increased use of renewable energy.

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk/media/press_releases/current/biomass.htm

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>