Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic loci assigned for musical aptitude in Finnish families

19.05.2008
Researchers from Finland and USA have identified one major (LOD score 3.33) and several potential loci associated with musical aptitude in the human genome. The results raise an interesting question about common evolutionary background of music and language faculties.

Molecular and statistical genetic studies in 15 Finnish families have shown that there is a substantial genetic component in musical aptitude. Musical aptitude was determined using three tests: a test for auditory structuring ability (Karma Music test), and the Seashore pitch and time discrimination subtests. The study represents the first systematic molecular genetic study that aims in the identification of candidate genes associated with musical aptitude.

The identified regions contain genes affecting cell extension and migration during neural development. Interestingly, an overlapping region previously associated with genetic locus for dyslexia was found raising a question about common evolutionary background of music and language faculties. The results show that musical aptitude is likely to be regulated by several predisposing genes/variants.

“The identification of genes/genetic variants involved in mediating music perception and performance would offer new tools to understand the role of music in human brain function, human evolution and its relationship to language faculty”, says the leader of the study, Dr. Irma Järvelä from the University of Helsinki.

The study was performed in collaboration with the University of Helsinki, Sibelius Academy, Helsinki, Finland, The Family Federation of Finland, Red Cross Finland Blood Service, and Southwest Foundation for Biomedical Research, San Antonio, USA.

The study can be read at http://jmg.bmj.com.

Paivi Lehtinen | alfa
Further information:
http://jmg.bmj.com
http://www.helsinki.fi

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>