Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV Infection Stems from Few Viruses

19.05.2008
A new study reveals the genetic identity of human immunodeficiency virus (HIV), the version responsible for sexual transmission, in unprecedented detail.

The finding provides important clues in the ongoing search for an effective HIV/AIDS vaccine, said researchers at the University of Alabama at Birmingham (UAB). The UAB team found that among billions of HIV variants only a few lead to sexual transmission.

Earlier studies have shown that a ‘bottleneck’ effect occurs where few versions of the virus lead to infection while many variants are present in the blood. The UAB study is the first to use genetic analysis and mathematical modeling to identify precisely those viruses responsible for HIV transmission.

George M. Shaw, M.D., Ph.D., professor in the UAB departments of Medicine and Microbiology and senior author on the report, said the research sheds new light on potential vulnerabilities in the virus at a time when science, medicine and society are still reeling from the failure of a major HIV vaccine clinical trial.

“We can now identify unambiguously those viruses that are responsible for sexual transmission of HIV-1. For the first time we can see clearly the face of the enemy,” said Shaw, a project leader with the Center for HIV/AIDS Vaccine Immunology. The center is a National Institutes of Health-sponsored consortium of researchers at UAB, Harvard Medical School in Boston, Oxford University in England, the University of North Carolina in Chapel Hill and Duke University in Durham, N.C.

The new HIV-1 findings are published online in the Proceedings of the National Academy of Sciences.

The new study was performed by sequencing many copies of the HIV envelope gene present in the viruses taken from 102 recently infected patients. The envelope gene encodes for a protein called Env that forms part of the outer covering of the virus, and is responsible for its infectiousness.

The researchers then used sophisticated mathematical models of HIV replication and genetic change to identify the virus or viruses responsible for transmission. In 80 percent of the newly infected patients, a single virus caused transmission, though each virus was different in each patient. In the other 20 percent of patients, two to five unique viruses caused transmission.

“Previously, researchers employed inexact methodologies that prevented precise identification of the virus that initiated infection,” said Brandon Keele, Ph.D., an instructor in UAB’s Department of Medicine and lead study investigator. “Our findings allow us to identify not only the transmitted virus, but also viruses that evolve from it.”

The UAB team said their work would lead to new research on how different HIV genes and proteins work together to make a virus biologically fit for transmission and for growth in the face of mounting immunity.

Statistics show that while the worldwide percentage of people infected with HIV has leveled off, the total number HIV cases is rising. In 2007, 33.2 million people were estimated to be living with HIV, 2.5 million people became newly infected and 2.1 million people died from AIDS, according to the Joint United Nations Programme on HIV/AIDS (UNAIDS) and the World Health Organization.

The new study was sponsored by grants from the National Institute of Allergy and Infectious Diseases and the Bill and Melinda Gates Foundation. It was conducted by researchers in the UAB departments of Medicine and Microbiology, at Duke University, Los Alamos National Laboratory and the Santa Fe Institute in New Mexico, the University of Massachusetts in Amherst, the University of North Carolina, Chapel Hill, the University of Maryland in College Park, the University of California, San Francisco, the University of Rochester in New York and the University of Cape Town in Rondebosch, South Africa.

Troy Goodman | newswise
Further information:
http://www.uab.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>