Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Crystal (Eye) Ball: Study Says Visual System Equipped With “Future Seeing Powers”

Catching a football. Maneuvering through a room full of people. Jumping out of the way when a golfer yells “fore.” Most would agree these seemingly simple actions require us to perceive and quickly respond to a situation. Assistant Professor of Cognitive Science at Rensselaer Polytechnic Institute Mark Changizi argues they require something more—our ability to foresee the future.

Catching a football. Maneuvering through a room full of people. Jumping out of the way when a golfer yells “fore.” Most would agree these seemingly simple actions require us to perceive and quickly respond to a situation. Assistant Professor of Cognitive Science at Rensselaer Polytechnic Institute Mark Changizi argues they require something more—our ability to foresee the future.

It takes our brain nearly one-tenth of a second to translate the light that hits our retina into a visual perception of the world around us. While a neural delay of that magnitude may seem minuscule, imagine trying to catch a ball or wade through a store full of people while always perceiving the very recent (one-tenth of a second prior) past. A ball passing within one meter of you and traveling at one meter per second in reality would be roughly six degrees displaced from where you perceive it, and even the slowest forward-moving person can travel at least ten centimeters in a tenth of a second.

Changizi claims the visual system has evolved to compensate for neural delays, allowing it to generate perceptions of what will occur one-tenth of a second into the future, so that when an observer actually perceives something, it is the present rather than what happened one-tenth of a second ago. Using his hypothesis, called “perceiving-the-present,” he was able to systematically organize and explain more than 50 types of visual illusions that occur because our brains are trying to perceive the near future. His findings are described in May-June issue of the journal Cognitive Science.

“Illusions occur when our brains attempt to perceive the future, and those perceptions don’t match reality. There has been great success at discovering and documenting countless visual illusions. There has been considerably less success in organizing them,” says Changizi, who is lead author on the paper. “My research focused on systematizing these known incidents of failed future seeing into a ‘periodic table’ of illusion classes that can predict a broad pattern of the illusions we might be subject to.”

More than meets the eye
We experience countless illusions in our lifetime. The most famous being geometrical illusions—those with converging lines and a vanishing point we often see in Psychology 101 classes or in entertaining optical illusion books.

To picture one, think of the Hering illusion, which looks like a bike spoke with two vertical lines drawn on either side of the center vanishing point. Although the lines are straight, they seem to bow out away from the vanishing point. The optical illusion occurs because our brains are predicting the way the underlying scene would project in the next moment if we were moving in the direction of the vanishing point.

“Evolution has seen to it that geometric drawings like this elicit in us premonitions of the near future,” says Changizi. “The converging lines toward a vanishing point are cues that trick our brains into thinking we are moving forward—as we would in the real world, where the door frame seems to bow out as we move through it—and we try to perceive what that world will look like in the next instant.”

Beyond geometric, Changizi was able to identify 27 other classes of illusions. He organized them into 28 predictable categories classified on a matrix that distributes them among four columns based on the type of visual feature that is misperceived (size, speed, luminance, and distance) and among seven rows based on the different optical features that occur when an observer is moving forward.

He then culled hundreds of previously documented illusions to test whether they would follow the appropriate prediction as determined by the table, and found that they did, indeed, follow the patterns he laid out in the matrix.

This new organization of illusions presents a range of potential applications, including more effective visual displays and enhanced visual arts. It especially may help constrain neuroscientists aiming to understand the mechanisms underlying vision, according to Changizi.

Changizi conducted his research during a fellowship in the Sloan-Swartz Center for Theoretical Neurobiology at the California Institute of Technology. Coauthors on the paper include: Caltech Biology Professor Shinsuke Shimojo, former Caltech undergraduate student Andrew Hsieh, and former Caltech postdoctoral researcher Ryota Kanai, as well as Romi Nijhawan, a psychologist at the University of Sussex in England.

The research was supported by a grant from the National Institutes of Health.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The university offers bachelor’s, master’s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Amber Cleveland | newswise
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>