Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystal (Eye) Ball: Study Says Visual System Equipped With “Future Seeing Powers”

19.05.2008
Catching a football. Maneuvering through a room full of people. Jumping out of the way when a golfer yells “fore.” Most would agree these seemingly simple actions require us to perceive and quickly respond to a situation. Assistant Professor of Cognitive Science at Rensselaer Polytechnic Institute Mark Changizi argues they require something more—our ability to foresee the future.

Catching a football. Maneuvering through a room full of people. Jumping out of the way when a golfer yells “fore.” Most would agree these seemingly simple actions require us to perceive and quickly respond to a situation. Assistant Professor of Cognitive Science at Rensselaer Polytechnic Institute Mark Changizi argues they require something more—our ability to foresee the future.

It takes our brain nearly one-tenth of a second to translate the light that hits our retina into a visual perception of the world around us. While a neural delay of that magnitude may seem minuscule, imagine trying to catch a ball or wade through a store full of people while always perceiving the very recent (one-tenth of a second prior) past. A ball passing within one meter of you and traveling at one meter per second in reality would be roughly six degrees displaced from where you perceive it, and even the slowest forward-moving person can travel at least ten centimeters in a tenth of a second.

Changizi claims the visual system has evolved to compensate for neural delays, allowing it to generate perceptions of what will occur one-tenth of a second into the future, so that when an observer actually perceives something, it is the present rather than what happened one-tenth of a second ago. Using his hypothesis, called “perceiving-the-present,” he was able to systematically organize and explain more than 50 types of visual illusions that occur because our brains are trying to perceive the near future. His findings are described in May-June issue of the journal Cognitive Science.

“Illusions occur when our brains attempt to perceive the future, and those perceptions don’t match reality. There has been great success at discovering and documenting countless visual illusions. There has been considerably less success in organizing them,” says Changizi, who is lead author on the paper. “My research focused on systematizing these known incidents of failed future seeing into a ‘periodic table’ of illusion classes that can predict a broad pattern of the illusions we might be subject to.”

More than meets the eye
We experience countless illusions in our lifetime. The most famous being geometrical illusions—those with converging lines and a vanishing point we often see in Psychology 101 classes or in entertaining optical illusion books.

To picture one, think of the Hering illusion, which looks like a bike spoke with two vertical lines drawn on either side of the center vanishing point. Although the lines are straight, they seem to bow out away from the vanishing point. The optical illusion occurs because our brains are predicting the way the underlying scene would project in the next moment if we were moving in the direction of the vanishing point.

“Evolution has seen to it that geometric drawings like this elicit in us premonitions of the near future,” says Changizi. “The converging lines toward a vanishing point are cues that trick our brains into thinking we are moving forward—as we would in the real world, where the door frame seems to bow out as we move through it—and we try to perceive what that world will look like in the next instant.”

Beyond geometric, Changizi was able to identify 27 other classes of illusions. He organized them into 28 predictable categories classified on a matrix that distributes them among four columns based on the type of visual feature that is misperceived (size, speed, luminance, and distance) and among seven rows based on the different optical features that occur when an observer is moving forward.

He then culled hundreds of previously documented illusions to test whether they would follow the appropriate prediction as determined by the table, and found that they did, indeed, follow the patterns he laid out in the matrix.

This new organization of illusions presents a range of potential applications, including more effective visual displays and enhanced visual arts. It especially may help constrain neuroscientists aiming to understand the mechanisms underlying vision, according to Changizi.

Changizi conducted his research during a fellowship in the Sloan-Swartz Center for Theoretical Neurobiology at the California Institute of Technology. Coauthors on the paper include: Caltech Biology Professor Shinsuke Shimojo, former Caltech undergraduate student Andrew Hsieh, and former Caltech postdoctoral researcher Ryota Kanai, as well as Romi Nijhawan, a psychologist at the University of Sussex in England.

The research was supported by a grant from the National Institutes of Health.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The university offers bachelor’s, master’s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Amber Cleveland | newswise
Further information:
http://www.rpi.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>