Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Identifies Proteins that Help Develop Mammalian Hearts

19.05.2008
The absence of two proteins in mammalian embryos prevents the development of a healthy heart, a new study by researchers at the Medical College of Wisconsin, Milwaukee, has found. The study, which appears in the May 15 issue of Developmental Biology, was led by Stephen Duncan, Ph.D., professor of cell biology, neurobiology and anatomy at the Medical College.

The absence of two proteins in mammalian embryos prevents the development of a healthy heart, a new study by researchers at the Medical College of Wisconsin, Milwaukee, has found.

The study, which appears in the May 15 issue of Developmental Biology, was led by Stephen Duncan, Ph.D., professor of cell biology, neurobiology and anatomy at the Medical College.

This is the first study that has successfully identified the factors responsible for the onset of heart formation in the mammalian embryo. Until now, no single mutation had been identified that was thought to be responsible for blocking proper development of the heart in mammalian embryos. The identification of these major developmental switches will allow researchers to unravel the fundamental mechanisms that define heart cell formation.

Understanding the molecular pathways that control the development of the heart has been the subject of much interest in the scientific community, as approximately 35,000 children are born in the United States each year with congenital heart defects. Many more die during gestation because of complications from improper heart development.

“Defining these molecular pathways has implications in the production of heart cells from stem cells,” said Dr. Duncan. “Our study suggests that mutations in GATA4 and GATA6 are likely contributors to the development of congenital heart disease in children. Indeed other investigators at our Medical College, as well as elsewhere, have found mutations in one of the genes from our study in children born with heart abnormalities.”

Dr. Duncan’s lab found that either of two proteins, GATA4 and GATA6, controls the expression of genes that tell early embryonic cells to start making other proteins that eventually become beating heart cells.

“When either GATA4 or GATA6 were present, the stem cells were able to make most of the proteins that are required for heart function suggesting that they act in a redundant manner,” Dr. Duncan said. “However, when both GATA4 and GATA6 genes were mutated, the embryonic stem cells were unable to form heart cells in the lab.”

The study observed how the absence or mutation of GATA4 and GATA6 proteins impacted heart development in mice embryos. The embryos were cloned from GATA4 and GATA6 deficient stem cells.

“When embryos were cloned from normal stem cells, they made normal beating hearts,” Dr. Duncan explained. “However, when embryos were cloned from the GATA4/GATA6 deficient stem cells, the embryos developed but were completely lacking all heart cells.”

Other Medical College researchers for the study include Roong Zhao, research associate of cell biology, neurobiology and anatomy; Michelle Battle, Ph.D., postdoctoral fellow of cell biology, neurobiology and anatomy; and Benjamin Bondow, research technologist of cell biology, neurobiology and anatomy.

Toranj Marphetia | newswise
Further information:
http://www.mcw.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>