Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Identifies Proteins that Help Develop Mammalian Hearts

19.05.2008
The absence of two proteins in mammalian embryos prevents the development of a healthy heart, a new study by researchers at the Medical College of Wisconsin, Milwaukee, has found. The study, which appears in the May 15 issue of Developmental Biology, was led by Stephen Duncan, Ph.D., professor of cell biology, neurobiology and anatomy at the Medical College.

The absence of two proteins in mammalian embryos prevents the development of a healthy heart, a new study by researchers at the Medical College of Wisconsin, Milwaukee, has found.

The study, which appears in the May 15 issue of Developmental Biology, was led by Stephen Duncan, Ph.D., professor of cell biology, neurobiology and anatomy at the Medical College.

This is the first study that has successfully identified the factors responsible for the onset of heart formation in the mammalian embryo. Until now, no single mutation had been identified that was thought to be responsible for blocking proper development of the heart in mammalian embryos. The identification of these major developmental switches will allow researchers to unravel the fundamental mechanisms that define heart cell formation.

Understanding the molecular pathways that control the development of the heart has been the subject of much interest in the scientific community, as approximately 35,000 children are born in the United States each year with congenital heart defects. Many more die during gestation because of complications from improper heart development.

“Defining these molecular pathways has implications in the production of heart cells from stem cells,” said Dr. Duncan. “Our study suggests that mutations in GATA4 and GATA6 are likely contributors to the development of congenital heart disease in children. Indeed other investigators at our Medical College, as well as elsewhere, have found mutations in one of the genes from our study in children born with heart abnormalities.”

Dr. Duncan’s lab found that either of two proteins, GATA4 and GATA6, controls the expression of genes that tell early embryonic cells to start making other proteins that eventually become beating heart cells.

“When either GATA4 or GATA6 were present, the stem cells were able to make most of the proteins that are required for heart function suggesting that they act in a redundant manner,” Dr. Duncan said. “However, when both GATA4 and GATA6 genes were mutated, the embryonic stem cells were unable to form heart cells in the lab.”

The study observed how the absence or mutation of GATA4 and GATA6 proteins impacted heart development in mice embryos. The embryos were cloned from GATA4 and GATA6 deficient stem cells.

“When embryos were cloned from normal stem cells, they made normal beating hearts,” Dr. Duncan explained. “However, when embryos were cloned from the GATA4/GATA6 deficient stem cells, the embryos developed but were completely lacking all heart cells.”

Other Medical College researchers for the study include Roong Zhao, research associate of cell biology, neurobiology and anatomy; Michelle Battle, Ph.D., postdoctoral fellow of cell biology, neurobiology and anatomy; and Benjamin Bondow, research technologist of cell biology, neurobiology and anatomy.

Toranj Marphetia | newswise
Further information:
http://www.mcw.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>