Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weather, waves and wireless: super strength signalling

16.05.2008
A new study from the University of Leicester has discovered a particular window of time when mobile signals and radio waves are ‘super strength’ – allowing them to be clearer and travel greater distances, potentially interfering with other systems.

The research, examining the signal strength of radio waves travelling over the sea, identified late afternoons and early evenings in spring and summer as a time when enhanced signals occur.

The research by Salil Gunashekar was part of his Doctoral studies at the University of Leicester’s Department of Engineering and has yielded results that have implications for the design of cellular telephone networks operating in marine and coastal regions

Dr Gunashekar, who is now a Post-Doctoral Research Associate in the Radio Systems Research Group, said: “In today's world, radio waves are an indispensable means of communicating information 'without wires' from one place to another, be it for radio broadcasts or cell phones, television transmissions or airport radars.

“When radio waves travel for long distances over the sea their strength can be affected by the weather. The constantly changing weather conditions over the sea mean that marine and coastal environments, in particular, are prone to unusual atmospheric phenomena that enable radio waves to travel longer distances and have higher strengths than expected.”

On Wednesday 4th June, in the fourth of the series of Doctoral Inaugural Lectures, Dr Gunashekar will present the key findings of his Ph.D. research in which he conducted a detailed theoretical and experimental investigation of the propagation characteristics of over-sea radio communications.

Specifically, between August 2003 and August 2005, three long-range radio paths operating at a frequency in the ultra high frequency band (UHF: specifically 2 Gigahertz) were established in the British Channel Islands. This frequency is of particular importance since it is used by many mobile phones. The relationship between specific over-sea propagation mechanisms and signal strength distribution patterns in a temperate region such as the English Channel have been examined, modelled and correlated with meteorological parameters.

Dr Gunashekar said: “Interestingly, signal strength enhancements have been observed on all three radio paths, predominantly in the late afternoon and evening periods, in the spring and summer months. During these periods, which occur only approximately 5-10% of the time, the influence of higher-altitude radio wave ‘trapping’ structures has been verified.”

The research conducted in this investigation is expected to have implications for the design of cellular telephone networks operating in marine and coastal regions, as well as other maritime communication systems such as those used in commercial shipping and sea-rescue operations, and is all the more applicable to the United Kingdom because of its extensive coastline.

Biographical note:

Salil Gunashekar is a Post-Doctoral Research Associate in the Radio Systems Research Group (Department of Engineering) at the University of Leicester, UK. He is currently working on a project that is experimentally investigating the feasibility of utilising multiple-input multiple-output (MIMO) techniques within the High Frequency radio band. The project is concerned with the application of modern antenna technology to this radio band with the aim of delivering increased data rates.

Salil completed his Ph.D. from the University of Leicester in November 2006. During his Ph.D. research, a detailed experimental and theoretical study of the long-range, over-sea propagation of 2 GHz radio waves in the British Channel Islands was conducted. The various issues that were investigated are of direct relevance in the planning of radio communication systems operating in the UHF band (e.g. GSM and UMTS) in marine and coastal regions.

Salil also completed an M.Sc. in Information and Communications Engineering from the University of Leicester in 2003. Before coming to Leicester, he did an M.Sc. in Informatics from the University of Delhi, India (2002). In 2000, Salil graduated with an honours degree in Physics from St. Stephen’s College, University of Delhi.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>