Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Connecting Cancer Genes: Study implicates 350 gene regions in cancer development in the mouse

A large genetic study in mice has identified hundreds of genes involved in the development of cancer by examining the DNA of more than 500 lymphomas to find the cancer causing mutations.

The study found just over 10,000 mutations in total, which together implicate almost 350 regions in the mouse genome in cancer formation. 50 of these regions correspond to genes known to be involved in human cancers while the other regions were novel, adding to our picture of the complex set of diseases that are cancers.

The results were obtained by an international consortium of researchers, led by Drs Anton Berns, Maarten van Lohuizen and Lodewyk Wessels from the Netherlands Cancer Institute (NKI), and Dr David Adams, Experimental Cancer Genetics, from the Wellcome Trust Sanger Institute and are published in Cell.

The team used a virus called the murine leukaemia virus to produce mutations in cancer genes: the virus targets white blood cells, resulting in lymphoma, a common tumour of the blood system.

"Human cancers are generally thought to be formed by the stepwise accumulation of mutations that disrupt genes within a cell, and the virus mimics this process as it inserts itself into the mouse genome," explains Dr David Adams, senior author on the paper. "The virus then acts as a 'tag', allowing us to identify where it has integrated and which gene or genes have been disrupted.

"By finding an average of 20 mutations from each of the 500 tumours, not only did we find many new cancer genes, but we can see which genes work together in the same cell to transform it into a lymphoma." Said Dr. Jaap Kool, co-first author on the paper from the NKI.

The infected mouse lines carried mutations in genes called p53 and p19, which are known to suppress the development of cancer and are among the most commonly mutated genes in human cancers. The team were able to identify a rich set of novel genes implicated in cancer, including additional genes that might act to suppress tumour development, which are not readily detected in most surveys.

Human cancer cells frequently contain many mutations that are not involved in the development of cancer – do not drive cancer development – but are produced by increased mutation rates in cancer cells and are 'passengers'. Discerning which are driver and which are passenger mutations is a challenge for human cancer gene studies.

"The benefit of our system in the mouse is that, unlike human tumours, which usually contain many different types of genetic alternations, the causal mutations that initiate these tumours in mice can be easily identified and studied," explains Dr Adams, "These studies are complementary to and enrich the analysis of human cancers."

The project was made possible by the Sanger Institute's high-throughput sequencing and computational resources, which allowed the team to identify new potential cancer genes in the mouse. By comparing their data to genome-wide human cancer datasets generated by the Sanger Institutes' Cancer Genome Project, they could show that at some of the of the newly identified genes were potentially relevant to human cancer formation.

The team are currently carrying out other cancer screens using viruses and additional methods to disrupt cancer genes. These screens are searching for genes and gene interactions in the formation of bowel, lymphoid and breast cancers.

Don Powell | alfa
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>