Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hyperactivity is Associated with Decreased Numbers of Interneurons

14.05.2008
A new study published in Biological Psychiatry on May 15th is “another example of how basic science research conducted in animals may help to identify new molecular targets that may be studied for the treatment or even prevention of psychiatric disorders,” according to Dr. John Krystal, Editor of Biological Psychiatry and affiliated with both Yale University School of Medicine and the VA Connecticut Healthcare System.

Deficits in gamma-aminobutyric acid (GABA) neuronal populations are being linked to a growing number of psychiatric disorders, including schizophrenia.

The researchers in this study have used an animal model to study the role of the neocortex, a part of the brain responsible for motor activity, in hyperactive behavior.

Müller Smith and colleagues demonstrate that mice lacking the fibroblast growth factor receptor 1 (FGFR1) display profound, non-habituating hyperactivity that is correlated with a lack of parvalbumin-positive and somatostatin-positive inhibitory interneurons in the neocortex.

A decreased number of these same interneurons is “one of the most consistent findings in schizophrenia and psychotic disorders,” explains Dr. Flora Vaccarino, corresponding author for this article.

Dr. Vaccarino adds, “Interestingly, the loss of parvalbumin+ cells was inversely proportional to locomotor hyperactivity in these animals.”

Although the authors do not know yet know the mechanism by which this occurs, she notes that “these mice can be used a model for developing treatments that may reverse this deficit.”

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com/

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>