Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR Installs 76-Teraflop Supercomputer for Critical Research on Climate Change, Severe Weather

09.05.2008
The National Center for Atmospheric Research (NCAR) has taken delivery of a new IBM supercomputer that will advance research into severe weather and the future of Earth's climate. The supercomputer, known as a Power 575 Hydro- Cluster, is the first in a highly energy-efficient class of machines to be shipped anywhere in the world.

Scientists at NCAR and across the country will use the new system to accelerate research into climate change, including future patterns of precipitation and drought around the world, changes to agriculture and growing seasons, and the complex influence of global warming on hurricanes. Researchers also will use it to improve weather forecasting models so society can better anticipate where and when dangerous storms may strike.

Named "bluefire," the new supercomputer has a peak speed of more than 76 teraflops (76 trillion floating-point operations per second). When fully operational, it is expected to rank among the 25 most powerful supercomputers in the world and will more than triple NCAR's sustained computing capacity.

"Bluefire is on the leading edge of high-performance computing technology," says Tom Bettge, director of operations and services for NCAR's Computational and Information Systems Laboratory. "Increasingly fast machines are vital to research into such areas as climate change and the formation of hurricanes and other severe storms. Scientists will be able to conduct breakthrough calculations, study vital problems at much higher resolution and complexity, and get results more quickly than before."

Researchers will rely on bluefire to generate the climate simulations necessary for the next report on global warming by the Intergovernmental Panel on Climate Change (IPCC), which conducts detailed assessments under the auspices of the United Nations. The IPCC was a recipient of the 2007 Nobel Peace Prize.

"NCAR has a well-deserved reputation for excellence in deploying supercomputing resources to address really difficult challenges," says Dave Turek, vice president of deep computing at IBM. "Bluefire will substantially expand the organization's ability to investigate climate change, severe weather events, and other important subjects."

Bluefire by the numbers

Bluefire is the second phase of a system called the Integrated Computing Environment for Scientific Simulation (ICESS) at NCAR. After undergoing acceptance testing, it will begin full-scale operations in August. Bluefire, which replaces three supercomputers with an aggregate peak speed of 20 teraflops, will provide supercomputing support for researchers at NCAR and other organizations through 2011.

An IBM Power 575 supercomputer, bluefire houses the new POWER6 microprocessor, which has a clock speed of 4.7 gigahertz. The system consists of 4,064 processors, 12 terabytes of memory, and 150 terabytes of FAStT DS4800 disk storage.

Bluefire relies on a unique, water-based cooling system that is 33 percent more energy efficient than traditional air-cooled systems. Heat is removed from the electronics by water-chilled copper plates mounted in direct contact with each POWER6 microprocessor chip. As a result of this water-cooled system and POWER6 efficiencies, bluefire is three times more energy efficient per rack than its predecessor.

"We're especially pleased that bluefire provides dramatically increased performance with much greater energy efficiency," Bettge says.

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under primary sponsorship by the National Science Foundation (NSF). Opinions, findings, conclusions, or recommendations expressed in this document are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, NASA, or other funding agencies.

David Hosansky | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>