Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clumps of red and white blood cells may contribute to sickle cell disease

30.04.2008
It’s long been known that patients with sickle cell disease have malformed, “sickle-shaped” red blood cells – which are normally disc-shaped – that can cause sudden painful episodes when they block small blood vessels.

Now, researchers at the University of North Carolina at Chapel Hill School of Medicine have shown that blood from sickle cell patients also contains clumps, or aggregates, of red and white blood cells that may contribute to the blockages.

The study, published on-line April 18 in the British Journal of Haematology, marks the first time that aggregates made up of red blood cells and white blood cells have been found in whole blood from sickle cell patients. The study also shows how the red and white blood cells adhere to one another: the interaction is mediated by a particular protein, integrin alpha four beta one.

First author Julia E. Brittain, Ph.D., a research assistant professor in the medical school’s department of biochemistry and biophysics, said further study could lead to new treatments for the disease. “If the blockages are caused by these chunks of aggregates that are circulating in the blood, and we know how the aggregates are sticking together, we potentially could design drugs to disrupt the aggregates so that they pass through the blood vessel more freely,” she said.

Normal red blood cells don’t interact with white blood cells. But Brittain first showed in lab tests with isolated cells that young red blood cells (reticulocytes) would interact with white blood cells and form aggregates with them. Then, she looked for such clumps in blood samples from 14 people with sickle cell disease. All the patient samples studied had clumps, though some had only a few, while others had thousands. She didn’t see clumps in samples from patients without sickle cell disease.

Brittain said other researchers may have disrupted the aggregates because blood collection tubes usually contain an anticoagulant that ties up calcium, which often plays a role in cell adhesion. She saw the aggregates only when she used an anticoagulant that doesn’t remove calcium.

Brittain and her colleagues plan further study of the phenomenon, including the conditions that might determine the number of aggregates in the blood, and whether they are affected by the drug hydroxurea, which is commonly used to treat sickle cell disease.

Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>