Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brookhaven Scientists Explore Brain's Reaction to Potent Hallucinogen

Increasingly popular recreational drug, salvia, shows rapid uptake, short duration in animals

Brain-imaging studies performed in animals at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory provide researchers with clues about why an increasingly popular recreational drug that causes hallucinations and motor-function impairment in humans is abused. Using trace amounts of Salvia divinorum - also known as "salvia," a Mexican mint plant that can be smoked in the form of dried leaves or serum - Brookhaven scientists found that the drug's behavior in the brains of primates mimics the extremely fast and brief "high" observed in humans. Their results are now published online in the journal NeuroImage.

Quickly gaining popularity among teenagers and young adults, salvia is legal in most states, but is grabbing the attention of municipal lawmakers. Numerous states have placed controls on salvia or salvinorin A - the plant's active component - and others, including New York, are considering restrictions.

"This is probably one of the most potent hallucinogens known," said Brookhaven chemist Jacob Hooker, the lead author of the study, which is the first to look at how the drug travels through the brain. "It's really important that we study drugs like salvia and how they affect the brain in order to understand why they are abused and to investigate their medicinal relevance, both of which can inform policy makers."

Hooker and fellow researchers used positron emission tomography, or PET scanning, to watch the distribution of salvinorin A in the brains of anesthetized primates. In this technique, the scientists administer a radioactively labeled form of salvinorin A (at concentrations far below pharmacologically active doses) and use the PET scanner to track its site-specific concentrations in various brain regions.

Within 40 seconds of administration, the researchers found a peak concentration of salvinorin A in the brain - nearly 10 times faster than the rate at which cocaine enters the brain. About 16 minutes later, the drug was essentially gone. This pattern parallels the effects described by human users, who experience an almost immediate high that starts fading away within 5 to 10 minutes.

High concentrations of the drug were localized to the cerebellum and visual cortex, which are parts of the brain responsible for motor function and vision, respectively. Based on their results and published data from human use, the scientists estimate that just 10 micrograms of salvia in the brain is needed to cause psychoactive effects in humans.

Salvia doesn't cause the typical euphoric state associated with other hallucinogens like LSD, Hooker said. The drug targets a receptor that is known to modulate pain and could be important for therapies as far reaching as mood disorders.

"Most people don't find this class of drugs very pleasurable," Hooker said. "So perhaps the main draw or reason for its appeal relates to the rapid onset and short duration of its effects, which are incredibly unique. The kinetics are often as important as the abused drug itself."

The Brookhaven team plans to conduct further studies related to salvia's abuse potential. The scientists also hope to develop radioactive tracers that can better probe the brain receptors to which salvia binds. Such studies could possibly lead to therapies for chronic pain and mood disorders.

This research was funded by the Office of Biological and Environmental Research within DOE's Office of Science. DOE has a long-standing interest in research on brain chemistry gained through brain-imaging studies. Brain-imaging techniques such as PET are a direct outgrowth of DOE's support of basic physics and chemistry research.

All research involving laboratory animals at Brookhaven National Laboratory is conducted under the jurisdiction of the Lab's Institutional Animal Care and Use Committee in compliance with the Public Heath Service (PHS) Policy on Humane Care and Use of Laboratory Animals, the U.S. Department of Agriculture's Animal Welfare Act, and the National Academy of Sciences' Guide for the Care and Use of Laboratory Animals. This research has enhanced understanding of a wide array of human medical conditions including cancer, drug addiction, Alzheimer's and Parkinson's diseases, and normal aging and has led to the development of several promising treatment strategies.

Kendra Snyder | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>