Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study breaks ground in revealing how neurons generate movement

28.04.2008
When the eye tracks a bird’s flight across the sky, the visual experience is normally smooth, without interruption. But underlying this behavior is a complex coordination of neurons that has remained mysterious to scientists.

Now, UCSF researchers have broken ground in understanding how the brain generates this tracking motion, a finding that offers a window, they say, into how neurons orchestrate all of the body’s movements.

The study, reported in the April 24 issue of Neuron, reveals that individual neurons do not fire independently across the entire duration of a motor function as traditionally thought. Rather, they coordinate their activity with other neurons, each firing at a particular moment in time.

“Scientists have known that neurons that connect to muscles initiate movement in a coordinated fashion. But they have not known how the neurons we are studying – which coordinate these front-line neurons -- commit the brain to move the eyes,”says co-lead author David Schoppik, PhD, who conducted the study while a doctoral candidate in the laboratory of senior author Stephen Lisberger, PhD, at the University of California, San Francisco.

“For decades, scientists have been asking, ‘Do the signals involve a handful of neurons or thousands? What is the nature of the commands?’ The classical understanding has been that one class of neuron is responsible for one movement, such as generating eye movement to the left, and that it remains active across the entire duration of a behavior,” he says.

“The new findings suggest a totally different way of looking at how movement is controlled across time,” says Lisberger, a Howard Hughes Medical Institute Investigator at UCSF, where he is professor of physiology, director of the W.M. Keck Foundation Center for Integrative Neuroscience, and co-director of the Sloan Center for Theoretical Neurobiology.

The findings, the researchers say, could inform efforts to develop neural prosthetics to treat paralysis and motor dysfunctions, such as those resulting from stroke. “The brain’s messages don’t reach the muscles in these conditions,” says Schoppik, “so it’s critical that the drive to these prosthetics reflect what the brain is trying to do to move muscles. Understanding how multiple neurons work together could influence the type of software created to drive these devices.”

The investigation of how neurons give rise to motor behaviorshas been stymied until now, says Schoppik, by the difficulties inherent in studying more than one neuron in action at a time during the course of a behavior. In the current study, the scientists overcame this obstacle in a study of macaque monkeys that had been trained to track a moving object with their eyes.

Basing their approach on two key pieces of information -- first, that when a neuron responds to a stimulus there is always a slight variation in its performance, a phenomenon that neuroscientists traditionally refer to as “noise,” and, second, that each attempt of the eye to pursue a moving target is also unique – they proposed that some aspects of neural variation may reflect behavioral variation.

They used this inherent variability as a probe. Using a formula from financial securities market analysis that looks at how individual stocks behave at a given time within the context of fluctuations in the larger financial market, they explored how individual neurons would behave relative to their neighbors.

They compared the deviations from the average spiking activity of single neurons and simultaneous deviations from the mean eye velocity. They also measured the degree to which variation shared across two pairs of concurrently active neurons.

The data demonstrated that individual neurons encode different aspects of behavior, controlling eye velocity fluctuations at particular moments during the course of eye movement, while the population of neurons collectively tiles the entire duration of the movement.

The analysis also revealed the strength of correlations in the eye movement predictions derived from pairs of simultaneously recorded neurons, and suggests, the researcher say, either that a small number of neurons are sufficient to drive the behavior at any given time or that many neurons operate collectively at each moment.

The finding, says Lisberger, underscores the importance of recording for more than one neuron at a time. “There is a lot that we can learn from how multiple neurons interact.”

The other co-author of the study was Katherine Nagel, PhD, at the time a doctoral candidate in the laboratory of Allison J. Doupe, MD, PhD, a professor of psychiatry and physiology and a member of the Keck Center for Integrative Neuroscience at UCSF.

The study was funded by the Howard Hughes Medical Institute and by a Conte Center for Neuroscience Research grant.

UCSF is a leading university dedicated to defining health worldwide through advanced biomedical research, graduate level education in the life sciences and health professions, and excellence in patient care.

Jennifer O’Brien | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>