Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First atomic-level look at a protein that causes brain disease

24.04.2008
For the first time, researchers have peered deeply at the atomic level into the protein that causes hereditary cerebral amyloid angiopathy (CAA) -- a disease thought to cause stroke and dementia.

The study pinpointed a tiny portion of the protein molecule that is key to the formation of plaques in blood vessels in the brain.

Ohio State University chemist Christopher Jaroniec and his colleagues report their results this week in the online edition of the Proceedings of the National Academy of Sciences.

Researchers worldwide are working to understand how certain kinds of proteins, called prions, cause degenerative brain diseases such as CAA. More common prion diseases include bovine spongiform encephalopathy (mad cow disease), and Creutzfeldt-Jakob disease in humans. All are incurable and fatal.

Jaroniec understands that any discovery related to prions could raise people’s hopes for a cure, but he emphasized that his study is only a first step towards understanding the structure of the prion for CAA.

“This is a very basic study of the structure of the protein, and hopefully it will give other researchers the information they need to perform further studies, and improve our understanding of CAA,” he said.

His team partnered with biochemists from Case Western Reserve University, who took a fragment of the human prion protein for CAA and tagged it with chemical markers.

Jaroniec explained that, while the prion protein used in the study is associated with the development of hereditary CAA, it is not infectious.

After the researchers tagged the molecule, they created the right chemical conditions for it to fold into macromolecules called amyloid fibrils.

Researchers know that in the body, these fibrils form plaques that lodge in blood vessel walls in the brain. But nobody has been able to closely examine the molecular structure of CAA fibrils until now.

“These fibrils are very large and complex, and so traditional biochemical techniques won’t reveal their structure in detail,” Jaroniec said.

The assistant professor of chemistry at Ohio State is an expert in a technique that can reveal the structure of such large molecules: solid-state nuclear magnetic resonance (NMR) spectroscopy.

NMR works by tuning into the radio waves emitted by atoms within materials. Every atom emits radio waves at a particular frequency, depending on the types of atoms that surround it.

The NMR technique the chemists used, called “magic angle spinning,” involves spinning materials at a certain angle with respect to the NMR's magnetic field in order to remove radio interference among the atoms. It offers researchers a clear view of which atoms make up a particular molecule, and how those atoms are arranged.

So after the researchers let the prion proteins fold into amyloid fibrils, they used magic angle spinning NMR to study the fibrils’ structure.

They searched the NMR signals for the chemical tags that had been planted in the prions. In that way, they were able to determine what parts of the original prion protein were contained within the fibrils.

They found, to their surprise, that some 80 percent of the original prion protein molecule was not present in the fibrils. The fibrils consisted exclusively of the remaining 20 percent -- approximately 29 amino acids, of which two appear to be especially critical to the structure of the molecule.

Other studies have suggested that these two amino acids, numbered 138 and 139, were key to the formation of the CAA fibrils, Jaroniec said. But this study is the first to confirm their importance by studying them at the atomic level.

The researchers are continuing this work, and plan to examine the structure of the fibrils in more detail, as well as other strains of the CAA prion protein.

Jaroniec’s partners on this project included Jonathan Helmus and Philippe Naudaud, both doctoral students at Ohio State, and their collaborators at Case Western.

This research was funded by Ohio State University and the National Institutes of Health.

Christopher Jaroniec | EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

New Test for Rare Immunodeficiency

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>