Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First atomic-level look at a protein that causes brain disease

24.04.2008
For the first time, researchers have peered deeply at the atomic level into the protein that causes hereditary cerebral amyloid angiopathy (CAA) -- a disease thought to cause stroke and dementia.

The study pinpointed a tiny portion of the protein molecule that is key to the formation of plaques in blood vessels in the brain.

Ohio State University chemist Christopher Jaroniec and his colleagues report their results this week in the online edition of the Proceedings of the National Academy of Sciences.

Researchers worldwide are working to understand how certain kinds of proteins, called prions, cause degenerative brain diseases such as CAA. More common prion diseases include bovine spongiform encephalopathy (mad cow disease), and Creutzfeldt-Jakob disease in humans. All are incurable and fatal.

Jaroniec understands that any discovery related to prions could raise people’s hopes for a cure, but he emphasized that his study is only a first step towards understanding the structure of the prion for CAA.

“This is a very basic study of the structure of the protein, and hopefully it will give other researchers the information they need to perform further studies, and improve our understanding of CAA,” he said.

His team partnered with biochemists from Case Western Reserve University, who took a fragment of the human prion protein for CAA and tagged it with chemical markers.

Jaroniec explained that, while the prion protein used in the study is associated with the development of hereditary CAA, it is not infectious.

After the researchers tagged the molecule, they created the right chemical conditions for it to fold into macromolecules called amyloid fibrils.

Researchers know that in the body, these fibrils form plaques that lodge in blood vessel walls in the brain. But nobody has been able to closely examine the molecular structure of CAA fibrils until now.

“These fibrils are very large and complex, and so traditional biochemical techniques won’t reveal their structure in detail,” Jaroniec said.

The assistant professor of chemistry at Ohio State is an expert in a technique that can reveal the structure of such large molecules: solid-state nuclear magnetic resonance (NMR) spectroscopy.

NMR works by tuning into the radio waves emitted by atoms within materials. Every atom emits radio waves at a particular frequency, depending on the types of atoms that surround it.

The NMR technique the chemists used, called “magic angle spinning,” involves spinning materials at a certain angle with respect to the NMR's magnetic field in order to remove radio interference among the atoms. It offers researchers a clear view of which atoms make up a particular molecule, and how those atoms are arranged.

So after the researchers let the prion proteins fold into amyloid fibrils, they used magic angle spinning NMR to study the fibrils’ structure.

They searched the NMR signals for the chemical tags that had been planted in the prions. In that way, they were able to determine what parts of the original prion protein were contained within the fibrils.

They found, to their surprise, that some 80 percent of the original prion protein molecule was not present in the fibrils. The fibrils consisted exclusively of the remaining 20 percent -- approximately 29 amino acids, of which two appear to be especially critical to the structure of the molecule.

Other studies have suggested that these two amino acids, numbered 138 and 139, were key to the formation of the CAA fibrils, Jaroniec said. But this study is the first to confirm their importance by studying them at the atomic level.

The researchers are continuing this work, and plan to examine the structure of the fibrils in more detail, as well as other strains of the CAA prion protein.

Jaroniec’s partners on this project included Jonathan Helmus and Philippe Naudaud, both doctoral students at Ohio State, and their collaborators at Case Western.

This research was funded by Ohio State University and the National Institutes of Health.

Christopher Jaroniec | EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>