Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pin1 is beneficial in Alzheimer's disease, detrimental to some forms of dementia

23.04.2008
Unexpected findings suggest need for alternate therapeutic approaches, different animal models for future research

The most common form of dementia, Alzheimer’s disease, and a relatively rare hereditary form of dementia, frontotemporal dementia with parkinsonism-17, share a common pathology: Both are the result of an overaccumulation of tau proteins, which form tangled lesions in the brain’s neurons and eventually lead to the collapse of the brain cells responsible for memory.

And, although mutations in the gene encoding tau have not been found in individuals with Alzheimer’s disease, they have been identified in individual with frontotemporal dementia, and are often used as models for studying Alzheimer’s disease.

A new study finds that the Pin1 enzyme, previously shown to be of benefit in “detangling” tau in Alzheimer’s disease, actually has the contradictory effect in cases in which the tau has certain mutations. Consequently, while increasing Pin1 in neurons effectively suppresses the disease development in cases of Alzheimer’s, it actually accelerates disease progression in the case of frontotemporal dementia.

Led by researchers at Beth Israel Deaconess Medical Center (BIDMC) and reported in the April 22 advance on-line issue of The Journal of Clinical Investigation, these new findings offer novel ideas for the development of therapies for Alzheimer’s disease and other dementias, and also point to the importance of using appropriate animal models for studying distinct tau-related neurodegenerative disorders and screening for therapeutic drugs.

“We were completely surprised to discover these diametrically opposed outcomes,” explains senior author Kun Ping Lu, MD, PhD, a scientist in the Division of Hematology/Oncology at BIDMC and Professor of Medicine at Harvard Medical School. “It appears that while boosting Pin1 activity is beneficial in cases of Alzheimer’s disease, inhibition of Pin1 is helpful for dementias that carry the P301L tau mutation [as is the case with frontotemporal dementia].”

Pin1 (prolyl isomerase) was first discovered by Lu and Salk Institute investigator Tony Hunter in 1995. In 2003, Lu and colleagues demonstrated that Pin1 promotes the removal of phosphates from tau, thereby “detangling” the protein which, in cases of Alzheimer’s disease, had become knotted and overburdened with excess phosphate molecules. Three years later, in 2006, the Lu team discovered that Pin1 also inhibits the production of toxic amyloid Abeta peptides, the central component of senile plaques and the second neuropathological hallmark in brains of Alzheimer’s patients. They further confirmed that when Pin1 was missing, neurons in regions of the brain responsible for memory would collapse under the weight of the tau protein tangles and toxic amyloid peptides, ultimately leading to age-dependent neurodegeneration. Together with other findings that Pin1 activity is inhibited in Alzheimer’s brains by many conditions, such as stresses, these results indicate that loss of Pin1 activity is a major contributing factor in the development of Alzheimer’s disease.

In this latest study, Lu and his coauthors set out to learn if by boosting levels of the Pin1 enzyme, the onset of Alzheimer’s could be prevented.

As predicted, the investigators found in both human cell lines and in mice that when Pin1 was normally present, the tau proteins readily degraded; when the enzyme was removed, the tau proteins stabilized and failed to break down. Subsequent mouse experiments in which Pin1 was moderately overexpressed in brain cells 10 days after birth again found that the tau protein degraded much more quickly than it did in normal control mice.

But, when the scientists next went on to cross two separate mouse models – those that overexpressed the Pin1 enzyme and mouse models of Alzheimer’s disease – they made a surprising discovery: Not only did the exact same Pin1 overexpression not suppress tau stability, it actually exacerbated the tau pathology and neurodegeneration among mice overexpressing P301L tau mutant.

“Transgenic mice overexpressing human wild-type tau or tau mutants have been typically used as Alzheimer’s models,” explains Lu, adding that the P301L-tau-mutant- mice are widely preferred due to their robust tau pathology and neurodegeneration. However, since no tau mutations are found in cases of Alzheimer’s disease, it remains unclear as to how appropriate tau mutant mice actually are as an Alzheimer’s model.

“The significance of our findings are two-fold,” he notes. “First, we have established a proof of concept that boosting Pin1 activity may offer a new idea for preventing or even treating the tau pathology and neurodegeneration in Alzheimer’s disease.

“And, second, given that no tau mutation is found in Alzheimer’s patients, this research suggests that it would be prudent to not use P301L tau as an Alzheimer's disease model, especially when screening and testing drugs, as it may produce diametrically opposite effects. Therefore, it is critical to use appropriate animal models for studying distinct tau-related neurodegenerative disorders and to develop disease-specific therapies for these devastating diseases.”

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>