Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melanoma lurks in larger skin lesions

23.04.2008
Skin lesions that are about the size of a pencil eraser are more likely to be melanomas, a deadly form of skin cancer, than smaller moles, according to a new study led by NYU Langone Medical Center researchers.

In a new study published in the April issue of Archives of Dermatology, the NYU researchers confirm that an important warning sign of melanoma — moles that are larger than 6 millimeters, the size of a pencil eraser — is still valid. In recent years, some researchers have argued that strict adherence to this guideline may make clinicians miss smaller melanomas.

“Diameter is a reasonable guideline to pay attention to and we did not see any reason to change it,” says David Polsky, M.D., Ph.D., assistant professor of dermatology and associate director of the Pigmented Lesions Section in the Roland O. Perelman Department of Dermatology at NYU School of Medicine, who led the study.

“Lesions that are smaller than 6 millimeters are unlikely to be melanoma. New and changing lesions are the most concerning, and lesions that are multiple colors are especially suspicious,” says Dr. Polsky.

More than 20 years ago, NYU dermatologists developed a widely used rule, the ABCD acronym, for recognizing growths on the skin that could be early melanomas. They recently added the letter E to the list. The warning signs are: A for asymmetrical lesions; B, lesions with irregular borders; C, lesions with multiple colors; D, for lesions larger than 6 millimeters; and E for evolving lesions that change in size, color, shape or symptoms such as itching over time.

The incidence of melanoma continues to rise. The American Cancer Society estimates that in 2008 there will be 62,480 new cases of melanoma in the United States. About 8,420 people will die of this disease this year. Excessive exposure to sunlight, a fair complexion, a family history of melanoma, and numerous moles, among other factors, place people at higher risk for the disease.

In the new study, Dr. Polsky and his colleagues used a computerized imaging system to measure the lesions in a large database of melanoma cases. They evaluated the lesions of 1,323 patients undergoing biopsies of 1,657 suspicious pigmented lesions. Based on their analysis, 804 or 48.5 percent of the lesions were larger than 6 millimeters in diameter and 138 or 8.3 percent were diagnosed as melanoma. Invasive melanoma, which has penetrated deeper into the skin and is most life threatening, was diagnosed in only 13 or 1.5 percent of 853 lesions that were 6 millimeters or smaller in diameter. By contrast, the invasive type was diagnosed in 41 or 5.1 percent of 804 lesions larger than 6 millimeters.

In situ melanomas, which are less dangerous because they remain in the skin’s outer layers, were diagnosed in 22 or 2.6 percent of 853 lesions 6 millimeters or smaller in diameter and in 62 or 7.7 percent of 804 lesions larger than 6 millimeters.

The co-authors of this study include: Naheed R. Abbasi, MPH, MD, Molly Yancovitz M.D., Alfred W. Kopf, M.D., Iman Osman, M.D., Robert J. Friedman, M.D., Darrell S. Rigel M.D., from NYU Langone Medical Center, and Katherine S. Panageas, DrPH, from Memorial Sloan-Kettering Cancer Center; Dina Gutkowicz-Krusin, Ph.D., from Electro-Optical Sciences Inc., and others.

Jennifer Berman | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>