Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research identifies first method for testing, assessing drug treatments for Chagas' disease

22.04.2008
Chagas’ disease is a tropical parasitic sickness that currently affects more than 16 million people, with a staggering 100 million at risk, largely in the tropical areas of South and Central America. And yet the main drug used to treat the disease is highly toxic and causes serious side effects.

Now, new research just published by scientists at the University of Georgia has identified for the first time a sensitive method for testing and assessing the efficacy of treatments for Chagas’ disease. The study could lead to new treatments for long-term sufferers of a disease that can be fatal.

“It is the first time we’ve been able to identify a set of measurements to determine whether or not a drug for Chagas actually works,” said Rick Tarleton, distinguished research professor of cellular biology and a faculty member at UGA’s Center for Tropical and Emerging Global Diseases.

The research was published today in the online edition of the journal Nature Medicine. Co-authors, also from the University of Georgia, are postdoctoral associate Juan Bustamante and master’s degree student Lisa Bixby.

The research presents the first and only evidence that the current drug therapies for Chagas’ disease can actually completely cure the infection. Still, current treatments have potentially severe side effects and are thought to be effective in less than 50 percent of those treated. More important, the model the team developed can be used for the development of better drugs against Trypanosoma cruzi, the parasite that causes the disease.

“We also found that the immunological markers of cure in this system, which we developed in mice, provide a means to monitor drug treatment efficacy in humans, something that has been the biggest impediment to developing new drugs,” said Tarleton.

There’s a fourth finding more important to the big picture of immunology, however. This study shows that chronic infections do not by default exhaust the immune system.

“Current dogma on chronic infections is that constant stimulation of the immune system eventually wears it out, which is one of the problems in treating such disorders as HIV/AIDS,” said Tarleton. “This study shows that one can have an infection for more than a year, but, when cured, the immune system develops a stable, protective memory.”

This idea of “memory” is at the heart of the study, and it involves T-cells, specifically one kind called cytotoxic or “killer” T-cells, which are blood-borne white blood cells that destroy T. cruzi-infected cells in the case of Chagas’ disease and virally infected and tumor cells in other cases. Tarleton and his colleagues documented the development of stable killer T-cell “memory” following drug-induced cure of a chronic infection. In other words, when the body is cleared of parasites, the killer T-cells, which may have been “exhausted” by battling the persistent infection, bounce back and recall how to do their job.

The implications of the study could be considerable, Tarleton said. The T. cruzi parasite is passed to humans from the bite of blood-sucking assassin bugs, which go by many names, including “kissing bugs.” The infection can also be acquired through contaminated blood transfusions and by eating food contaminated with parasites.

In its first stages, the disease often causes no more than a local swelling at the point of the bite. This acute phase often passes, but the malady, if untreated, can then enter a chronic phase that can last for decades and cause heart disease and intestinal disorders. In many cases, Chagas’, named for the Brazilian scientist who first described it nearly a century ago, is fatal.

While several hundred thousand people in the United States may have the disease, these are largely immigrants from Latin American countries. The disease, however, is a major public health issue in all of South America and kills as many as 50,000 people each year, according to some estimates, making it the most significant parasitic disease of the Americas, Tarleton said.

Kim Osborne | EurekAlert!
Further information:
http://www.uga.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>