Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research identifies first method for testing, assessing drug treatments for Chagas' disease

22.04.2008
Chagas’ disease is a tropical parasitic sickness that currently affects more than 16 million people, with a staggering 100 million at risk, largely in the tropical areas of South and Central America. And yet the main drug used to treat the disease is highly toxic and causes serious side effects.

Now, new research just published by scientists at the University of Georgia has identified for the first time a sensitive method for testing and assessing the efficacy of treatments for Chagas’ disease. The study could lead to new treatments for long-term sufferers of a disease that can be fatal.

“It is the first time we’ve been able to identify a set of measurements to determine whether or not a drug for Chagas actually works,” said Rick Tarleton, distinguished research professor of cellular biology and a faculty member at UGA’s Center for Tropical and Emerging Global Diseases.

The research was published today in the online edition of the journal Nature Medicine. Co-authors, also from the University of Georgia, are postdoctoral associate Juan Bustamante and master’s degree student Lisa Bixby.

The research presents the first and only evidence that the current drug therapies for Chagas’ disease can actually completely cure the infection. Still, current treatments have potentially severe side effects and are thought to be effective in less than 50 percent of those treated. More important, the model the team developed can be used for the development of better drugs against Trypanosoma cruzi, the parasite that causes the disease.

“We also found that the immunological markers of cure in this system, which we developed in mice, provide a means to monitor drug treatment efficacy in humans, something that has been the biggest impediment to developing new drugs,” said Tarleton.

There’s a fourth finding more important to the big picture of immunology, however. This study shows that chronic infections do not by default exhaust the immune system.

“Current dogma on chronic infections is that constant stimulation of the immune system eventually wears it out, which is one of the problems in treating such disorders as HIV/AIDS,” said Tarleton. “This study shows that one can have an infection for more than a year, but, when cured, the immune system develops a stable, protective memory.”

This idea of “memory” is at the heart of the study, and it involves T-cells, specifically one kind called cytotoxic or “killer” T-cells, which are blood-borne white blood cells that destroy T. cruzi-infected cells in the case of Chagas’ disease and virally infected and tumor cells in other cases. Tarleton and his colleagues documented the development of stable killer T-cell “memory” following drug-induced cure of a chronic infection. In other words, when the body is cleared of parasites, the killer T-cells, which may have been “exhausted” by battling the persistent infection, bounce back and recall how to do their job.

The implications of the study could be considerable, Tarleton said. The T. cruzi parasite is passed to humans from the bite of blood-sucking assassin bugs, which go by many names, including “kissing bugs.” The infection can also be acquired through contaminated blood transfusions and by eating food contaminated with parasites.

In its first stages, the disease often causes no more than a local swelling at the point of the bite. This acute phase often passes, but the malady, if untreated, can then enter a chronic phase that can last for decades and cause heart disease and intestinal disorders. In many cases, Chagas’, named for the Brazilian scientist who first described it nearly a century ago, is fatal.

While several hundred thousand people in the United States may have the disease, these are largely immigrants from Latin American countries. The disease, however, is a major public health issue in all of South America and kills as many as 50,000 people each year, according to some estimates, making it the most significant parasitic disease of the Americas, Tarleton said.

Kim Osborne | EurekAlert!
Further information:
http://www.uga.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>