Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer cells spread by releasing "bubbles"Isabelle Kling

21.04.2008
A new fundamental mechanism of how tumour cells communicate has just been discovered by the team of Dr. Janusz Rak at the Research Institute of the McGill University Health Centre (MUHC) in collaboration with Dr Guha from the University of Toronto.

The cancer cells are able to communicate with their more healthy counter-parts by releasing vesicles. These bubble-like structures contain cancer-causing (oncogenic) proteins that can trigger specific mechanisms when they merge into non or less-malignant cells. These findings could change our view on how cancerous tissues work and lead to major clinical innovations. They were published on April 20 in the on-line edition of Nature Cell Biology.

The surface of some brain tumour cells has long been known to express a mutated version of what is called the variant III epidermal growth factor receptor (EGFRvIII). Although this factor is expressed only in a fraction of tumour cells, it has a major impact on the malignancy of the whole tumor. How could this cellular minority have such an important impact? This mechanism was still unknown… until now.

This study shows that the mutated EGFRvIII triggers production of small vesicles that project from the cell membrane and that carry mutated copies of EGFRvIII on their surfaces. They were baptised "oncosomes." Surprisingly enough, this shows that oncoproteins are not always confined to the cell that produced them. In this case they even migrate!

Oncosomes will migrate until they fuse with another cell, either healthy or benign tumoral. Oncogenic protein AGFRvIII then becomes integrated in the membrane of the "recipient" cell and starts stimulating specific metabolic pathways to make it act in an aberrant and malignant way. Although this may be a transient event, the changes could impact tumor behaviour by more rapid increases in cell numbers and by stimulation of blood vessel growth, hallmarks of malignant brain tumors.

"With this information we can imagine that many mutant proteins are not necessarily confined to the cells that make them, but rather can migrate and spread around as cargo of oncosomes, a process that could be referred to as formation of the "oncogenic field effect," explained Dr. Rak. "It demonstrates that cancer is a multi-cell process, where the cells talk to one another extensively. This goes against the traditional view that a single 'mutated' cell will simply multiply uncontrollably to the point of forming a tumour. This discovery opens exciting new research avenues, but we also hope that it will lead to positive outcomes for patients."

Indeed, the presence of oncosomes (containing EGFRvIII or other proteins) in blood of cancer patients could become a clinical marker, meaning that doctors could screen for a tumour's molecular characteristics instead of having to perform invasive surgery or biopsy. Currently, in the case of brain cancer, this very precise assessment cannot be performed without removing the tumour and therefore opening a patient's skull. However, the assay and analysis of oncosomes would potentially only require taking a small sample of blood or cerebrospinal fluid. This would be a step in ensuring patient comfort and choosing the best therapeutic strategy for them, factors that are key in the journey towards personalized medicine in a hopefully not-too-distant future.

Dr Rak would like to highlight the outstanding work done by Dr Khalid Al-Nedawi the lead author and Brian Meehan the coauthor of the study, from the Research Institute of the MUHC.

Dr. Janusz Rak is a researcher in the Cancer Axis at the Research Institute of the McGill University Health Centre.

This study was funded by the National Cancer Institute of Canada and the Canadian Cancer Society.

L'article peut être consulté au: http://www.nature.com/ncb/journal/vaop/ncurrent/full/ncb1725.html

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, the university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 600 researchers, nearly 1200 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

The Research Institute of the MUHC is supported in part by the Fonds de la recherche en santé du Québec.

Isabelle Kling | MUHC
Further information:
http://www.muhc.mcgill.ca
http://www.muhc.ca/research.

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>