Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer cells spread by releasing "bubbles"Isabelle Kling

21.04.2008
A new fundamental mechanism of how tumour cells communicate has just been discovered by the team of Dr. Janusz Rak at the Research Institute of the McGill University Health Centre (MUHC) in collaboration with Dr Guha from the University of Toronto.

The cancer cells are able to communicate with their more healthy counter-parts by releasing vesicles. These bubble-like structures contain cancer-causing (oncogenic) proteins that can trigger specific mechanisms when they merge into non or less-malignant cells. These findings could change our view on how cancerous tissues work and lead to major clinical innovations. They were published on April 20 in the on-line edition of Nature Cell Biology.

The surface of some brain tumour cells has long been known to express a mutated version of what is called the variant III epidermal growth factor receptor (EGFRvIII). Although this factor is expressed only in a fraction of tumour cells, it has a major impact on the malignancy of the whole tumor. How could this cellular minority have such an important impact? This mechanism was still unknown… until now.

This study shows that the mutated EGFRvIII triggers production of small vesicles that project from the cell membrane and that carry mutated copies of EGFRvIII on their surfaces. They were baptised "oncosomes." Surprisingly enough, this shows that oncoproteins are not always confined to the cell that produced them. In this case they even migrate!

Oncosomes will migrate until they fuse with another cell, either healthy or benign tumoral. Oncogenic protein AGFRvIII then becomes integrated in the membrane of the "recipient" cell and starts stimulating specific metabolic pathways to make it act in an aberrant and malignant way. Although this may be a transient event, the changes could impact tumor behaviour by more rapid increases in cell numbers and by stimulation of blood vessel growth, hallmarks of malignant brain tumors.

"With this information we can imagine that many mutant proteins are not necessarily confined to the cells that make them, but rather can migrate and spread around as cargo of oncosomes, a process that could be referred to as formation of the "oncogenic field effect," explained Dr. Rak. "It demonstrates that cancer is a multi-cell process, where the cells talk to one another extensively. This goes against the traditional view that a single 'mutated' cell will simply multiply uncontrollably to the point of forming a tumour. This discovery opens exciting new research avenues, but we also hope that it will lead to positive outcomes for patients."

Indeed, the presence of oncosomes (containing EGFRvIII or other proteins) in blood of cancer patients could become a clinical marker, meaning that doctors could screen for a tumour's molecular characteristics instead of having to perform invasive surgery or biopsy. Currently, in the case of brain cancer, this very precise assessment cannot be performed without removing the tumour and therefore opening a patient's skull. However, the assay and analysis of oncosomes would potentially only require taking a small sample of blood or cerebrospinal fluid. This would be a step in ensuring patient comfort and choosing the best therapeutic strategy for them, factors that are key in the journey towards personalized medicine in a hopefully not-too-distant future.

Dr Rak would like to highlight the outstanding work done by Dr Khalid Al-Nedawi the lead author and Brian Meehan the coauthor of the study, from the Research Institute of the MUHC.

Dr. Janusz Rak is a researcher in the Cancer Axis at the Research Institute of the McGill University Health Centre.

This study was funded by the National Cancer Institute of Canada and the Canadian Cancer Society.

L'article peut être consulté au: http://www.nature.com/ncb/journal/vaop/ncurrent/full/ncb1725.html

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, the university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 600 researchers, nearly 1200 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

The Research Institute of the MUHC is supported in part by the Fonds de la recherche en santé du Québec.

Isabelle Kling | MUHC
Further information:
http://www.muhc.mcgill.ca
http://www.muhc.ca/research.

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>