Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides new understanding of forces behind seasonal flu virus evolution

21.04.2008
Do influenza viruses persist in low levels year-round in the northern and southern hemispheres, or does a new crop of the virus emerge afresh in tropical zones such as Southeast Asia before spreading into temperate regions around the globe" Researchers have provided an answer to this long-standing question: new strains arise each year.

The new findings should help public health officials more quickly and accurately determine which strains to include in the annual flu vaccine.

The study, supported in part by the National Institutes of Health (NIH), appears online in advance of print in the journal Nature.

The researchers analyzed full gene sequences of seasonal influenza virus samples collected from the world’s temperate regions north and south of the equator. Their data comprised full genetic sequences of 1,302 isolates of influenza A virus collected over 12 years from New Zealand and New York state.

By quantifying the degree of genetic diversity among the strains’ subtypes, gene segments and geographic locations, the researchers were able to detect patterns indicating that virus strains do not persist from one flu season to the next in the temperate regions. Therefore, the researchers deduced, new flu strains emerge annually from the tropics.

The international team of researchers included Jeffery K. Taubenberger, M.D., Ph.D., of the National Institute of Allergy and Infectious Diseases, NIH; Cecile Viboud, Ph.D., of NIH’s Fogarty International Center; and Edward C. Holmes, Ph.D., of Pennsylvania State University, who received funding from the National Institute of General Medical Sciences, NIH. The gene sequence information is stored in an NIAID-supported and publicly accessible database, the Influenza Genome Sequencing Project http://www3.niaid.nih.gov/research/resources/mscs/Influenza/.

ARTICLE: A Rambaut et al. The genomic and epidemiological dynamics of human influenza A virus. Nature DOI: 10.1038/nature06945 (2008).

WHO: NIAID Director Anthony S. Fauci, M.D., is available to comment. Jeffery K. Taubenberger, M.D., Ph.D., Laboratory of Infectious Diseases, NIAID, is also available.

CONTACT: To schedule interviews, contact Anne A. Oplinger in the NIAID Office of Communications and Government Relations at 301-402-1663 or niaidnews@niaid.nih.gov.

NIAID is a component of the National Institutes of Health. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on basic immunology, transplantation and immune-related disorders, including autoimmune diseases, asthma and allergies.

The National Institutes of Health (NIH)--The Nation's Medical Research Agency--includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases.

News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

Anne A. Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov
http://www.nih.gov

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>