Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishing Throws Targeted Species Off Balance

18.04.2008
Fishing activities can provoke volatile fluctuations in the populations they target, but it's not often clear why. A new study published in the journal Nature by scientists at Scripps Institution of Oceanography at UC San Diego and colleagues has identified the general underlying mechanism.

Research led at Scripps with a distinguished team of government and international experts (including two chief scientific advisors to the United Kingdom) demonstrates that fishing can throw targeted fish populations off kilter.

Fishing can alter the "age pyramid" by lopping off the few large, older fish that make up the top of the pyramid, leaving a broad base of faster-growing small younglings. The team found that this rapidly growing and transitory base is dynamically unstable-a finding having profound implications for the ecosystem and the fishing industries built upon it.

This schematic outlines variability on exploited and unexploited.
"The data show that fished species appear to be significantly more nonlinear and less stable than unfished species," said Professor George Sugihara of Scripps. "We think the mechanism involves systematic alteration of the demographic parameters-and especially increases in growth rates that magnify destabilization in many ways-which can happen as fishing truncates the age structure."

Imagine a container of water with a 500-pound fish. With food, it grows a little bigger. Without food it gets a bit smaller. Imagine the same container with 500 one-pound fish. They eat, reproduce and the resulting thousands of fish boom, quickly outstripping the resources and the population crashes. These many smaller fish-with the same initial "biomass" as the larger fish-can't average out the environmental fluctuations, and in fact amplify them through higher turnover rates that promote boom and bust cycles.

The study that included academic and government scientists from Alaska, Asia and Great Britain is based on data from the California Cooperative Oceanic Fisheries Investigations (CalCOFI), a program based at Scripps that has monitored fish and oceanographic activities of the California Current for more than 50 years. To arrive at their results, the researchers compared the CalCOFI records of larvae, a key indicator of adult populations, of both fished and non-fished species in the California Current.

The schematic outlines variability on exploited and unexploited.Fishing typically extracts the older, larger members of a targeted species and fishing regulations often impose minimum size limits to protect the smaller, younger fishes.

"That type of regulation, which we see in many sport fisheries, is exactly wrong," said Sugihara. "It's not the young ones that should be thrown back, but the larger, older fish that should be spared. Not only do the older fish provide stability and capacitance to the population, they provide more and better quality offspring."

Thus the danger, according to Sugihara, is that current policies that manage according to current biomass targets (without significant forecast skill) while ignoring fish size pose risks that can further destabilize the population. This instability can in principle propagate systemically to the whole ecosystem, much like a stock market crash or a domino effect, and magnify risk for the fishing industry itself as well as those of ecologically related fisheries.

This is especially true when trying to rebuild fish stocks, Sugihara says.

"This may be the most important implication of this work, as we attempt to rehabilitate fisheries," said Sugihara. "Regulations based solely on biomass harvest targets are incomplete. They must also account for age-size structure in the populations," he said. "Current policies and industry pressures that encourage lifting bans on fishing when biomass is rehabilitated-but where maximum age and size are not-contain risk."

This is currently the case with Atlantic swordfish, for which industry pressures to resume fishing are based on the restoration of historic biomass levels, even though the swordfish are clearly undersized.

"In the extreme case, the danger of such unstable dynamics for certain populations for management is that harvest targets may lag the population, potentially making things worse," said Sugihara. "A high harvest target may be set after an especially abundant period when the population may be poised to decline on it's own. Likewise future abundant periods may represent missed opportunities, despite current low abundances. As senior officials of the Canadian Department of Fisheries and Oceans have said, 'we are often a year behind in our stock projections.'"

Sugihara cautioned that nonlinearity is not unique to fished species. Nonequilibrium overshooting and undershooting occurs in unexploited stocks, but to a lower extent. Therefore, classical single-species population models that require equilibrium are unlikely to be very successful in stock forecasts, except perhaps in the very short term.

"Other methods that do not rely on these assumptions may be more promising," suggests Christian Anderson, paper co-author.

In addition to Sugihara and Anderson, the study included Scripps Oceanography Chih-hao Hsieh (now a professor at National Taiwan University); Stuart Sandin of Scripps; Roger Hewitt of the National Marine Fisheries Service, Southwest Fisheries Science Center; Anne Hollowed of the National Marine Fisheries Service, Alaska Fisheries Science Center; Sir John Beddington of Imperial College London (current Chief Science Advisor to the United Kingdom) and Lord Robert May of Oxford (a former Chief Scientific Advisor to the UK).

The research was supported by NOAA Fisheries and the Environment program, The MacQuown Chair of Natural History, The Deutsche Bank - Jameson Complexity Studies Fund, the Sugihara Family Trust and the Kyoto University grant for Biodiversity Research of the 21st Century.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>