Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early exposure to common weed killer impairs amphibian development

18.04.2008
Study results indicate a larger range of harmful consequences

Tadpoles develop deformed hearts and impaired kidneys and digestive systems when exposed to the widely used herbicide atrazine in their early stages of life, according to research by Tufts University biologists.

The results present a more comprehensive picture of how this common weed killer – once thought to be harmless to animals -- disrupts growth of vital organs in amphibians during multiple growth periods.

In recent years, worldwide amphibian population declines have fueled concerns over the potentially harmful effects of pesticides on "sentinel" organisms. Previous research had revealed negative effects of atrazine on amphibians extremely early and late in development. The Tufts study, published in the February 2008 edition of "Environmental Health Perspectives," examined tadpoles during an often overlooked period of development, organ morphogenesis.

Study Results Broadens Knowledge of Herbicide's Effects During a Vulnerable Stage

Organ morphogenesis is a brief, extremely sensitive phase in the tadpoles' growth cycle when they are starting to develop organs, noted Kelly A. McLaughlin, Associate Professor of Biology and lead researcher in the study. She explained that experiments were designed to broaden the understanding of how chemicals affect biological growth in amphibians over multiple stages of development. A $5,000 Tufts University Faculty Research Marshall Grant helped fund the study.

"Amphibians are very vulnerable to contamination since atrazine is used in the same environs where they live and breed," McLaughlin said.

Atrazine is used to control broadleaf and grassy weeds on golf courses and residential lawns, according to the Federal Environmental Protection Agency. Farmers use it to treat corn and soybeans. Atrazine blocks photosynthesis once it is absorbed by plants. Chronic exposure to the herbicide during metamorphosis altered amphibian gonadal development, according to previous research.

To study the consequences of atrazine exposure during organ morphogenesis, McLaughlin and her colleagues, Professor of Biology J. Michael Reed, doctoral candidate Jenny R. Lenkowski and Lisa Deininger, a Summer Scholars program undergraduate student, collected eggs from adult female frogs and then fertilized them in vitro. Scientists exposed the developing tadpoles to 10, 25 and 35 mg/L of atrazine. The 35 mg/L dosage simulated the average amount of herbicide used when it is applied in the field, said McLaughlin.

Multiple Impacts

Twelve to 24 hours after exposure to atrazine, tadpoles were examined for abnormal heart growth, visceral hemorrhaging, intestinal coiling, edema and apoptosis (normal cell death that is "programmed" by the body).

Compared with control populations, the tadpoles that were exposed to atrazine had a dramatically higher incidence of abnormalities. The degree of deformities generally corresponded to the size of the dose. After 48 hours of exposure, the point at which organ development is disrupted most profoundly, 57 percent of the tadpoles exposed to 35 mg/L of atrazine had hearts that were smaller than normal, compared with 2% to 3% for the two control groups.

Ectopic Cell Death

The Tufts scientists also examined atrazine exposed tadpoles for increased incidence of apoptosis by measuring levels of active caspase-3 in the pronephric kidney and midbrain. Caspase-3 is a protein needed for apoptosis to occur. They conducted measurements after 6, 12, 24 and 48 hours of exposure in tadpoles exposed to 25 and 35 mg/l of atrazine. Researchers observed that the atrazine-exposed tadpoles showed significant increases in caspase-3 levels in the kidney and midbrain at 12 hours and beyond when compared with controls. The findings indicated a high incidence of ectopic, or abnormal, apoptosis.

"The increased levels of apoptosis in the midbrain and pronephric kidney we observe suggest that atrazine may cause tissue malformation by inducing ectopic programmed cell death, either directly or indirectly through a mechanism that has not been identified," wrote the researchers.

McLaughlin and her team hope that their findings will lay a foundation for further research to determine the underlying mechanism by which atrazine exposure can affect so many different organ systems during the same stage of early development.

"Our work here documents that atrazine affects amphibian's early development, so the second question is how is this happening?" she said. "We know it blocks photosynthesis in plants but why does it have such negative impact on amphibians?"

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Alex Reid | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>