Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early exposure to common weed killer impairs amphibian development

18.04.2008
Study results indicate a larger range of harmful consequences

Tadpoles develop deformed hearts and impaired kidneys and digestive systems when exposed to the widely used herbicide atrazine in their early stages of life, according to research by Tufts University biologists.

The results present a more comprehensive picture of how this common weed killer – once thought to be harmless to animals -- disrupts growth of vital organs in amphibians during multiple growth periods.

In recent years, worldwide amphibian population declines have fueled concerns over the potentially harmful effects of pesticides on "sentinel" organisms. Previous research had revealed negative effects of atrazine on amphibians extremely early and late in development. The Tufts study, published in the February 2008 edition of "Environmental Health Perspectives," examined tadpoles during an often overlooked period of development, organ morphogenesis.

Study Results Broadens Knowledge of Herbicide's Effects During a Vulnerable Stage

Organ morphogenesis is a brief, extremely sensitive phase in the tadpoles' growth cycle when they are starting to develop organs, noted Kelly A. McLaughlin, Associate Professor of Biology and lead researcher in the study. She explained that experiments were designed to broaden the understanding of how chemicals affect biological growth in amphibians over multiple stages of development. A $5,000 Tufts University Faculty Research Marshall Grant helped fund the study.

"Amphibians are very vulnerable to contamination since atrazine is used in the same environs where they live and breed," McLaughlin said.

Atrazine is used to control broadleaf and grassy weeds on golf courses and residential lawns, according to the Federal Environmental Protection Agency. Farmers use it to treat corn and soybeans. Atrazine blocks photosynthesis once it is absorbed by plants. Chronic exposure to the herbicide during metamorphosis altered amphibian gonadal development, according to previous research.

To study the consequences of atrazine exposure during organ morphogenesis, McLaughlin and her colleagues, Professor of Biology J. Michael Reed, doctoral candidate Jenny R. Lenkowski and Lisa Deininger, a Summer Scholars program undergraduate student, collected eggs from adult female frogs and then fertilized them in vitro. Scientists exposed the developing tadpoles to 10, 25 and 35 mg/L of atrazine. The 35 mg/L dosage simulated the average amount of herbicide used when it is applied in the field, said McLaughlin.

Multiple Impacts

Twelve to 24 hours after exposure to atrazine, tadpoles were examined for abnormal heart growth, visceral hemorrhaging, intestinal coiling, edema and apoptosis (normal cell death that is "programmed" by the body).

Compared with control populations, the tadpoles that were exposed to atrazine had a dramatically higher incidence of abnormalities. The degree of deformities generally corresponded to the size of the dose. After 48 hours of exposure, the point at which organ development is disrupted most profoundly, 57 percent of the tadpoles exposed to 35 mg/L of atrazine had hearts that were smaller than normal, compared with 2% to 3% for the two control groups.

Ectopic Cell Death

The Tufts scientists also examined atrazine exposed tadpoles for increased incidence of apoptosis by measuring levels of active caspase-3 in the pronephric kidney and midbrain. Caspase-3 is a protein needed for apoptosis to occur. They conducted measurements after 6, 12, 24 and 48 hours of exposure in tadpoles exposed to 25 and 35 mg/l of atrazine. Researchers observed that the atrazine-exposed tadpoles showed significant increases in caspase-3 levels in the kidney and midbrain at 12 hours and beyond when compared with controls. The findings indicated a high incidence of ectopic, or abnormal, apoptosis.

"The increased levels of apoptosis in the midbrain and pronephric kidney we observe suggest that atrazine may cause tissue malformation by inducing ectopic programmed cell death, either directly or indirectly through a mechanism that has not been identified," wrote the researchers.

McLaughlin and her team hope that their findings will lay a foundation for further research to determine the underlying mechanism by which atrazine exposure can affect so many different organ systems during the same stage of early development.

"Our work here documents that atrazine affects amphibian's early development, so the second question is how is this happening?" she said. "We know it blocks photosynthesis in plants but why does it have such negative impact on amphibians?"

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Alex Reid | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>