Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UAB Study Shows Drug May Fight Biliary Cancers

• Potential treatment for pancreatic adenocarcinoma
• Works effectively alone and with chemo
• Urgent need for new treatments

Laboratory studies by University of Alabama at Birmingham (UAB) researchers have shown that the drug triphendiol (NV-196) causes cell death in pancreatic and bile duct cancer cell lines, slows tumor growth and sensitizes tumors to chemotherapy treatments.

The findings were presented April 13 by Ewan Tytler, Ph.D., assistant professor in the UAB Department of Surgery, Gastrointestinal Section, at the annual meeting of the American Association for Cancer Research (AACR).

Tytler and his colleagues assessed the potential of triphendiol as a treatment for pancreatic adenocarcinoma using three representative cell lines. Triphendiol induced cell death in all three cell lines and pre-treating the cell lines with triphendiol increased the effectiveness of chemotherapy. Animal model studies showed that triphendiol in combination with chemotherapy inhibited tumor growth more effectively than each drug alone.

"In our laboratory studies, triphendiol is more potent at inducing cell death in pancreatic and bile duct cancer cells compared to the chemotherapy drug gemcitabine alone at up to 10-fold lower concentrations," Tytler said. "Of course, there is still much work to be done before this could become a treatment protocol for cancer patients but our findings are promising and validate the continued development of triphendiol as a possible pancreatic cancer therapy."

Triphendiol is being developed by Marshall Edwards Inc., as a treatment for late stage pancreatic and gall bladder cancer and recently received orphan drug status by the U.S. Food and Drug Administration. Triphendiol has been licensed by Novogen to Marshall Edwards Inc., who funded Tytler's study.

Tytler said that there is an urgent need for new pancreatic cancer treatments because fewer than 20 percent of patients are candidates for surgery. Current treatment is limited to chemotherapy, which is not always effective, as most tumors are resistant to or become resistant to the commonly used chemotherapy drug for pancreatic tumors, gemcitabine.

UAB research associate Xiaohong Wang, M.D. and UAB professor of Surgery J. Anthony Thompson, Ph.D., are co-authors of the study.

Media Contact
Jennifer Lollar
(205) 934-3888

Jennifer Lollar | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>