Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clues to ancestral origin of placenta emerge in Stanford study

15.04.2008
Researchers at the Stanford University School of Medicine have uncovered the first clues about the ancient origins of a mother's intricate lifeline to her unborn baby, the placenta, which delivers oxygen and nutrients critical to the baby's health.

The evidence suggests the placenta of humans and other mammals evolved from the much simpler tissue that attached to the inside of eggshells and enabled the embryos of our distant ancestors, the birds and reptiles, to get oxygen.

"The placenta is this amazing, complex structure and it's unique to mammals, but we've had no idea what its evolutionary origins are," said Julie Baker, PhD, assistant professor of genetics. Baker is senior author of the study, which will be published in the May issue of Genome Research.

The placenta grows inside the mother's uterus and serves as a way of exchanging gas and nutrients between mother and fetus; it is expelled from the mother's body after the birth of a baby. It is the only organ to develop in adulthood and is the only one with a defined end date, Baker said, making the placenta of interest to people curious about how tissues and organs develop.

Beyond being a biological curiosity, the placenta also plays a role in the health of both the mother and the baby. Some recent research also suggests that the placenta could be a key barrier in preventing or allowing molecules to pass to the unborn baby that influence the baby's disease risk well into adulthood.

"The placenta seems to be critical for fetal health and maternal heath," Baker said. Despite its major impact, almost nothing was known about how the placenta evolved or how it functions.

Baker and Kirstin Knox, graduate student and the study's first author, began addressing the question of the placenta's evolution by determining which genes are active in cells of the placenta throughout pregnancy in mice.

They found that the placenta develops in two distinct stages. In the first stage, which runs from the beginning of pregnancy through mid-gestation, the placental cells primarily activate genes that mammals have in common with birds and reptiles. This suggests that the placenta initially evolved through repurposing genes the early mammals inherited from their immediate ancestors when they arose more than 120 million years ago.

In the second stage, cells of the mammalian placenta switch to a new wave of species-specific genes. Mice activate newly evolved mouse genes and humans activate human genes.

It makes sense that each animal would need a different set of genes, Baker said. "A pregnant orca has different needs than a mouse and so they had to come up with different hormonal solutions to solve their problems," she said. For example, an elephant's placenta nourishes a single animal for 660 days. A pregnant mouse gestates an average of 12 offspring for 20 days. Clearly, those two pregnancies would require very different placentas.

Baker said these findings are particularly interesting given that cloned mice are at high risk of dying soon after the placenta's genetic transition takes place. "There's obviously a huge regulatory change that takes place," she said. What's surprising is that despite the dramatic shift taking place in the placenta, the tissue doesn't change in appearance.

Understanding the placenta's origins and function could prove useful. Previous studies suggest the placenta may contribute to triggering the onset of maternal labor, and is suspected to be involved in a maternal condition called pre-eclampsia, which is a leading cause of premature births.

Baker intends to follow up on this work by collaborating with Theo Palmer, PhD, associate professor of neurosurgery; Gill Bejerano, PhD, assistant professor of developmental biology, and Anna Penn, MD, PhD, assistant professor of pediatrics. Together, the group hopes to learn how the placenta protects the growing brain of the unborn baby, a protection that seems to extend into adulthood.

Mitzi Baker | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>