Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clues to ancestral origin of placenta emerge in Stanford study

15.04.2008
Researchers at the Stanford University School of Medicine have uncovered the first clues about the ancient origins of a mother's intricate lifeline to her unborn baby, the placenta, which delivers oxygen and nutrients critical to the baby's health.

The evidence suggests the placenta of humans and other mammals evolved from the much simpler tissue that attached to the inside of eggshells and enabled the embryos of our distant ancestors, the birds and reptiles, to get oxygen.

"The placenta is this amazing, complex structure and it's unique to mammals, but we've had no idea what its evolutionary origins are," said Julie Baker, PhD, assistant professor of genetics. Baker is senior author of the study, which will be published in the May issue of Genome Research.

The placenta grows inside the mother's uterus and serves as a way of exchanging gas and nutrients between mother and fetus; it is expelled from the mother's body after the birth of a baby. It is the only organ to develop in adulthood and is the only one with a defined end date, Baker said, making the placenta of interest to people curious about how tissues and organs develop.

Beyond being a biological curiosity, the placenta also plays a role in the health of both the mother and the baby. Some recent research also suggests that the placenta could be a key barrier in preventing or allowing molecules to pass to the unborn baby that influence the baby's disease risk well into adulthood.

"The placenta seems to be critical for fetal health and maternal heath," Baker said. Despite its major impact, almost nothing was known about how the placenta evolved or how it functions.

Baker and Kirstin Knox, graduate student and the study's first author, began addressing the question of the placenta's evolution by determining which genes are active in cells of the placenta throughout pregnancy in mice.

They found that the placenta develops in two distinct stages. In the first stage, which runs from the beginning of pregnancy through mid-gestation, the placental cells primarily activate genes that mammals have in common with birds and reptiles. This suggests that the placenta initially evolved through repurposing genes the early mammals inherited from their immediate ancestors when they arose more than 120 million years ago.

In the second stage, cells of the mammalian placenta switch to a new wave of species-specific genes. Mice activate newly evolved mouse genes and humans activate human genes.

It makes sense that each animal would need a different set of genes, Baker said. "A pregnant orca has different needs than a mouse and so they had to come up with different hormonal solutions to solve their problems," she said. For example, an elephant's placenta nourishes a single animal for 660 days. A pregnant mouse gestates an average of 12 offspring for 20 days. Clearly, those two pregnancies would require very different placentas.

Baker said these findings are particularly interesting given that cloned mice are at high risk of dying soon after the placenta's genetic transition takes place. "There's obviously a huge regulatory change that takes place," she said. What's surprising is that despite the dramatic shift taking place in the placenta, the tissue doesn't change in appearance.

Understanding the placenta's origins and function could prove useful. Previous studies suggest the placenta may contribute to triggering the onset of maternal labor, and is suspected to be involved in a maternal condition called pre-eclampsia, which is a leading cause of premature births.

Baker intends to follow up on this work by collaborating with Theo Palmer, PhD, associate professor of neurosurgery; Gill Bejerano, PhD, assistant professor of developmental biology, and Anna Penn, MD, PhD, assistant professor of pediatrics. Together, the group hopes to learn how the placenta protects the growing brain of the unborn baby, a protection that seems to extend into adulthood.

Mitzi Baker | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>