Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exercise may lead to faster prostate tumor growth

15.04.2008
Prostate tumors grew more quickly in mice who exercised than in those who did not, leading to speculation that exercise may increase blood flow to tumors, according to a new study by researchers in the Duke Comprehensive Cancer Center (DCCC) and the Duke Prostate Center.

“Our study showed that exercise led to significantly greater tumor growth than a more sedentary lifestyle did, in this mouse model,” said Lee Jones, Ph.D., a researcher in the DCCC and senior investigator on this study. “Our thought is that we may, in the future, be able to use this finding to design better drug delivery models to more effectively treat prostate cancer patients, and those with other types of cancer as well.”

The findings were presented in a poster session at the American Association for Cancer Research annual meeting on April 13 in San Diego, Calif. The study was funded by the United States Department of Defense, the Prostate Cancer Foundation and the American Urological Association Foundation, Rising Star in Urology Award, given to Stephen Freedland, one of the study’s investigators.

The researchers implanted prostate tumors subcutaneously in the flanks of 50 mice and then put half of the mice in cages with exercise wheels and half in cages with no wheels. All mice were fed the same diet. On average, the exercising mice ran more than half a mile each day.

“We found that among the mice that had the opportunity to voluntarily exercise, tumors grew approximately twice as fast as they did among the mice that did not have the opportunity to exercise,” Jones said.

Researchers and clinicians know that a challenge in delivering chemotherapy and radiation to tumors can be their poor blood flow, so these findings may hint at a way in which to improve blood flow to tumors, perhaps then allowing for better distribution of medicine, he said.

“We’re wondering, can we combine exercise with treatments such as chemotherapy, hormone therapy or radiation, to maximize the results we achieve in prostate cancer patients,” Jones said. “That question will be the subject of subsequent studies.”

The researchers are currently conducting a validation study, in mice, in which tumors are injected directly into the prostate, thereby better simulating human prostate cancer, Jones said.

“Down the line, we will test this hypothesis in humans undergoing medical treatment for prostate cancer,” he said.

The researchers want to caution men against interpreting these findings as an endorsement for not exercising for fear of getting or exacerbating cancer.

“These mice were not receiving treatment and we were allowing aggressive tumors to grow unchecked for the sake of the experiment,” said study investigator Freedland, a urologist at Duke. “Patients would not find themselves in the same situation.”

Concerns should also be overridden by the well-established benefits of exercise, including its positive effects on cardiovascular health, Type II diabetes, obesity, and many other chronic conditions, he said.

“This study gives us insight into which cellular pathways are affected by exercise, and starts to give us clues about how to harness the beneficial effects,” said Michael Potter, a medical student at Duke and lead investigator on the study. “Ultimately, we hope that this knowledge will help us use exercise to both deliver medicines more effectively and protect the body from the harmful side effects of treatment, as we already know it can.”

This is one of the first studies to look at the physiological effects of exercise on the tumor itself, rather than examining the quality-of-life or symptom-control effects of exercise in cancer patients, Jones said.

“The findings were a bit surprising, but provide a very important and exciting foundation upon which to build,” he said.

Lauren Shaftel Williams | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>