Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Exercise may lead to faster prostate tumor growth

Prostate tumors grew more quickly in mice who exercised than in those who did not, leading to speculation that exercise may increase blood flow to tumors, according to a new study by researchers in the Duke Comprehensive Cancer Center (DCCC) and the Duke Prostate Center.

“Our study showed that exercise led to significantly greater tumor growth than a more sedentary lifestyle did, in this mouse model,” said Lee Jones, Ph.D., a researcher in the DCCC and senior investigator on this study. “Our thought is that we may, in the future, be able to use this finding to design better drug delivery models to more effectively treat prostate cancer patients, and those with other types of cancer as well.”

The findings were presented in a poster session at the American Association for Cancer Research annual meeting on April 13 in San Diego, Calif. The study was funded by the United States Department of Defense, the Prostate Cancer Foundation and the American Urological Association Foundation, Rising Star in Urology Award, given to Stephen Freedland, one of the study’s investigators.

The researchers implanted prostate tumors subcutaneously in the flanks of 50 mice and then put half of the mice in cages with exercise wheels and half in cages with no wheels. All mice were fed the same diet. On average, the exercising mice ran more than half a mile each day.

“We found that among the mice that had the opportunity to voluntarily exercise, tumors grew approximately twice as fast as they did among the mice that did not have the opportunity to exercise,” Jones said.

Researchers and clinicians know that a challenge in delivering chemotherapy and radiation to tumors can be their poor blood flow, so these findings may hint at a way in which to improve blood flow to tumors, perhaps then allowing for better distribution of medicine, he said.

“We’re wondering, can we combine exercise with treatments such as chemotherapy, hormone therapy or radiation, to maximize the results we achieve in prostate cancer patients,” Jones said. “That question will be the subject of subsequent studies.”

The researchers are currently conducting a validation study, in mice, in which tumors are injected directly into the prostate, thereby better simulating human prostate cancer, Jones said.

“Down the line, we will test this hypothesis in humans undergoing medical treatment for prostate cancer,” he said.

The researchers want to caution men against interpreting these findings as an endorsement for not exercising for fear of getting or exacerbating cancer.

“These mice were not receiving treatment and we were allowing aggressive tumors to grow unchecked for the sake of the experiment,” said study investigator Freedland, a urologist at Duke. “Patients would not find themselves in the same situation.”

Concerns should also be overridden by the well-established benefits of exercise, including its positive effects on cardiovascular health, Type II diabetes, obesity, and many other chronic conditions, he said.

“This study gives us insight into which cellular pathways are affected by exercise, and starts to give us clues about how to harness the beneficial effects,” said Michael Potter, a medical student at Duke and lead investigator on the study. “Ultimately, we hope that this knowledge will help us use exercise to both deliver medicines more effectively and protect the body from the harmful side effects of treatment, as we already know it can.”

This is one of the first studies to look at the physiological effects of exercise on the tumor itself, rather than examining the quality-of-life or symptom-control effects of exercise in cancer patients, Jones said.

“The findings were a bit surprising, but provide a very important and exciting foundation upon which to build,” he said.

Lauren Shaftel Williams | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>