Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In lab study, researchers find molecule that disrupts Ewing's sarcoma oncogene

15.04.2008
Researchers at Georgetown University Medical Center have found a small molecule they say can block the action of the oncogene that causes Ewing's sarcoma, a rare cancer found in children and young adults. If further studies continue to prove beneficial, they say the novel agent could be the first targeted therapy to treat the disease, which can produce tumors anywhere in the body.

The findings, presented today at the annual meeting of the American Association for Cancer Research (AACR) in San Diego, suggest that the unique way in which this molecule works -- through a so-called protein-protein interaction -- could provide a model upon which to design other therapies, says the study's lead investigator, Jeffrey Toretsky, M.D., a pediatric oncology physician and researcher at Georgetown University's Lombardi Comprehensive Cancer Center.

"I think this holds really wonderful promise as a unique way of targeting fusion proteins," he says. "People thought it wasn't possible to have a small molecule that can bind between flexible proteins, but we have shown that it can be done."

This study was conducted in laboratory cells, so additional research is necessary before the novel agent can be tested in patients, Toretsky says. In vivo studies are now underway, he says.

Ewing's sarcoma is caused by the exchange of DNA between two chromosomes, a process known as a translocation. The new gene, known as EWS-FLI1, is created when the EWS gene on chromosome 22 fuses to the FLI1 gene on chromosome 11, and its product is the fusion protein responsible for cancer formation.

In the United States, about 500 patients annually are diagnosed with the cancer, and they are treated with a combination of five different chemotherapy drugs. Between 60-70 percent of patients survive over time, but many have effects that linger from the therapy.

Toretsky has long led research into the causes of, and treatments for, Ewing's sarcoma. He and his laboratory colleagues were the first to make a recombinant EWS-FLI1 fusion protein. "We did this in order to find out if EWS-FLI1 might be binding with other cellular proteins," he says.

They found that, indeed, the fusion protein stuck to another protein, RNA helicase A (RHA), a molecule that forms protein complexes in order to control gene transcription. "We believe that when RHA binds to EWS-FLI1, the combination becomes more powerful at turning genes on and off," says the study's first author, Hayriye Verda Erkizan, Ph.D., a postdoctoral researcher in Toretsky's lab who is presenting the study results at AACR.

The researchers used a laboratory technique to keep RHA apart from the fusion protein, and found that both were important to cancer formation. Knowing that, they worked to identify the specific region on RHA that stuck to EWS-FLI1, and then collaborated with investigators in Georgetown's Drug Discovery Program to find a molecule that would keep the two proteins separated. In other words, such an agent would stick to EWS-FLI1 in the very place that RHA bound to the fusion molecule.

Using a library of small molecules loaned to Georgetown from the National Cancer Institute, the team of investigators tested 3,000 compounds to see if any would bind to immobilized EWS-FLI1 proteins. They found one that did, and very tightly.

This was a wonderful discovery, Erkizan says, because the notion long accepted among scientists is that it is not possible to block protein-protein interactions given that the surface of these proteins are slippery, and much too flexible for a drug to bind to.

"These are wiggly proteins yet this study shows that inhibition of protein-protein interactions with a small molecule is possible," Toretsky says. This possibility means that fusion proteins, such as those produced in other sarcomas as well as diverse disorders, might be inhibited, he says. This is a different process than other drugs that have been shown to work against fusion proteins, such as Gleevec, which blocks the enzyme produced by the chromosomal translocation responsible for chronic myelogenous leukemia (CML). "Gleevec inhibits a single protein, while we are trying to block the binding of two proteins, and we are very enthusiastic about the results so far," Toretsky says.

Toretsky recently received a $750,000 Clinical Scientist Award in Translational Research from the Burroughs Wellcome Fund (BWF), which he will use to accelerate these translational efforts to help treat Ewing's sarcoma, utilizing GUMC's drug discovery program.

Karen Mallet | EurekAlert!
Further information:
http://lombardi.georgetown.edu
http://www.georgetown.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>