Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The good and bad side of anti-cancer compounds

11.04.2008
Compounds known as “HDAC inhibitors” exhibit cancer-killing activities in cultured cells. While they are currently being tested as anti-cancer agents in clinical trials, just how they execute their effects is unclear.

In a pair of recent papers, Vanderbilt-Ingram Cancer Center investigators provide a potential mechanism by which HDAC inhibitors specifically damage cancer cells and offer clues about possible adverse effects of these compounds – findings with important implications for their clinical use as cancer therapies.

Scott Hiebert, Ph.D., professor of Biochemistry and Medicine, and colleagues initially set out to study how chromosomal translocations – which happen when chromosomes break and rejoin, creating new genes at the breakpoints – cause acute leukemias.

He previously had found that a chromosomal translocation common in acute myeloid leukemias led to the formation of a new protein, a mutant transcription factor, that actively turned genes off. Enzymes known as histone deacetylases (HDACs) helped the mutant protein turn genes off by stabilizing the tightly coiled structure of DNA in chromosomes, making it inaccessible to proteins that transcribe DNA.

“We thought that if we could inhibit these HDACs, we could turn the genes back on and cure leukemia,” Hiebert explained.

While there are at least 17 different HDACs, Hiebert’s work suggested that one in particular, called HDAC3, might be the critical HDAC in triggering acute leukemia.

To investigate the effects of inhibiting HDAC3, Hiebert and colleagues genetically engineered mice lacking the protein. However, the mice died before birth. Even when grown in cell culture, mouse cells lacking HDAC3 died.

“The question is: why are they dying? And what we found was kind of surprising,” he said.

In the April 11 issue of Molecular Cell, Hiebert and colleagues report that these cells die because they can’t repair the DNA damage that occurs naturally when the cells copy their DNA during cell division. HDAC3 inhibition only killed cells that were in the process of DNA replication. However, cells cultured in a medium that stalled cell division – a situation similar to the mature cells in most adult tissues – survived.

This provided an important clue as to why HDAC inhibitors specifically kill tumor cells – which divide rapidly and prolifically – and spare healthy cells.

“If we take cells out of the cycle, making them quiescent, like most of your tissue cells are, they aren’t affected by (HDAC inhibitors) or by the (genetic) inactivation of HDAC3. Whereas cells that are actively cycling or dividing, like the tumor cell, are susceptible,” said Hiebert.

“We think that these HDAC inhibitors are actually having a therapeutic benefit against cancer by causing DNA damage…and we’re not repairing that damage. That eventually leads the cell to die,” he explained.

Although previous studies suggest that HDAC inhibitors have some tumor-killing ability on their own, Hiebert’s recent findings especially support using HDAC inhibitors as adjuncts to chemotherapy or radiation treatment, both of which induce DNA damage. Giving an HDAC inhibitor beforehand may prevent tumor cells from being able to repair the DNA damage that will be inflicted by the radiation or chemotherapy treatments.

“We’re excited about that because that’s where the real benefit of these drugs will eventually come in,” he says.

HDAC inhibition isn’t without side effects, however. And another recent paper from Hiebert’s lab, published in the EMBO Journal in March, provides some insight into how HDAC inhibition might cause liver damage.

In that study, Hiebert’s group turned off HDAC3 in the liver only. These mice, which did survive to adulthood, developed extensive liver damage with grossly enlarged and fatty livers. The mice also had major metabolic abnormalities, reflected in elevated cholesterol and triglyceride levels.

Fortunately, the HDAC inhibitors currently under investigation are short-lived in the body, which may limit any potential adverse effects.

“I think the short half-life in people is actually going to be a benefit for these compounds, because they are transient therapies,” he noted.

Hiebert’s lab is following these mice to determine the long-term effects of HDAC inhibition. And, because the available HDAC inhibitors are relatively broad-spectrum, inhibiting several of the 17 HDACs, he is looking to develop HDAC inhibitors that more selectively target HDAC3.

The Food and Drug Administration recently approved an HDAC inhibitor called SAHA (suberoylanilide hydroxamic acid) for treating a form of T-cell lymphoma – which means that the drug will likely be given off-label for other types of tumors.

While this marks a major step forward in the therapeutic use of HDAC inhibitors, Hiebert notes, “we think they can be used better. And that’s why we’re excited by these results.”

Dagny Stuart McMillin | EurekAlert!
Further information:
http://www.Vanderbilt.Edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>