Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The good and bad side of anti-cancer compounds

11.04.2008
Compounds known as “HDAC inhibitors” exhibit cancer-killing activities in cultured cells. While they are currently being tested as anti-cancer agents in clinical trials, just how they execute their effects is unclear.

In a pair of recent papers, Vanderbilt-Ingram Cancer Center investigators provide a potential mechanism by which HDAC inhibitors specifically damage cancer cells and offer clues about possible adverse effects of these compounds – findings with important implications for their clinical use as cancer therapies.

Scott Hiebert, Ph.D., professor of Biochemistry and Medicine, and colleagues initially set out to study how chromosomal translocations – which happen when chromosomes break and rejoin, creating new genes at the breakpoints – cause acute leukemias.

He previously had found that a chromosomal translocation common in acute myeloid leukemias led to the formation of a new protein, a mutant transcription factor, that actively turned genes off. Enzymes known as histone deacetylases (HDACs) helped the mutant protein turn genes off by stabilizing the tightly coiled structure of DNA in chromosomes, making it inaccessible to proteins that transcribe DNA.

“We thought that if we could inhibit these HDACs, we could turn the genes back on and cure leukemia,” Hiebert explained.

While there are at least 17 different HDACs, Hiebert’s work suggested that one in particular, called HDAC3, might be the critical HDAC in triggering acute leukemia.

To investigate the effects of inhibiting HDAC3, Hiebert and colleagues genetically engineered mice lacking the protein. However, the mice died before birth. Even when grown in cell culture, mouse cells lacking HDAC3 died.

“The question is: why are they dying? And what we found was kind of surprising,” he said.

In the April 11 issue of Molecular Cell, Hiebert and colleagues report that these cells die because they can’t repair the DNA damage that occurs naturally when the cells copy their DNA during cell division. HDAC3 inhibition only killed cells that were in the process of DNA replication. However, cells cultured in a medium that stalled cell division – a situation similar to the mature cells in most adult tissues – survived.

This provided an important clue as to why HDAC inhibitors specifically kill tumor cells – which divide rapidly and prolifically – and spare healthy cells.

“If we take cells out of the cycle, making them quiescent, like most of your tissue cells are, they aren’t affected by (HDAC inhibitors) or by the (genetic) inactivation of HDAC3. Whereas cells that are actively cycling or dividing, like the tumor cell, are susceptible,” said Hiebert.

“We think that these HDAC inhibitors are actually having a therapeutic benefit against cancer by causing DNA damage…and we’re not repairing that damage. That eventually leads the cell to die,” he explained.

Although previous studies suggest that HDAC inhibitors have some tumor-killing ability on their own, Hiebert’s recent findings especially support using HDAC inhibitors as adjuncts to chemotherapy or radiation treatment, both of which induce DNA damage. Giving an HDAC inhibitor beforehand may prevent tumor cells from being able to repair the DNA damage that will be inflicted by the radiation or chemotherapy treatments.

“We’re excited about that because that’s where the real benefit of these drugs will eventually come in,” he says.

HDAC inhibition isn’t without side effects, however. And another recent paper from Hiebert’s lab, published in the EMBO Journal in March, provides some insight into how HDAC inhibition might cause liver damage.

In that study, Hiebert’s group turned off HDAC3 in the liver only. These mice, which did survive to adulthood, developed extensive liver damage with grossly enlarged and fatty livers. The mice also had major metabolic abnormalities, reflected in elevated cholesterol and triglyceride levels.

Fortunately, the HDAC inhibitors currently under investigation are short-lived in the body, which may limit any potential adverse effects.

“I think the short half-life in people is actually going to be a benefit for these compounds, because they are transient therapies,” he noted.

Hiebert’s lab is following these mice to determine the long-term effects of HDAC inhibition. And, because the available HDAC inhibitors are relatively broad-spectrum, inhibiting several of the 17 HDACs, he is looking to develop HDAC inhibitors that more selectively target HDAC3.

The Food and Drug Administration recently approved an HDAC inhibitor called SAHA (suberoylanilide hydroxamic acid) for treating a form of T-cell lymphoma – which means that the drug will likely be given off-label for other types of tumors.

While this marks a major step forward in the therapeutic use of HDAC inhibitors, Hiebert notes, “we think they can be used better. And that’s why we’re excited by these results.”

Dagny Stuart McMillin | EurekAlert!
Further information:
http://www.Vanderbilt.Edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>