Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Award-winning study says back pain may be in your genes

What do you learn by looking at the spines of hundreds of Finnish twins? If you are the international team of researchers behind the Twin Spine Study, you find compelling proof that back pain problems may be more a matter of genetics than physical strain.

The findings of the Twin Spine Study, an ongoing research program started in 1991, have led to a dramatic paradigm shift in the way disc degeneration is understood. Last month a paper presenting an overview of the Twin Spine Study’s multidisciplinary investigation into the root causes of disc degeneration received a Kappa Delta Award from the American Academy of Orthopaedic Surgeons, arguably the most prestigious annual award in musculoskeletal research.

“In the past, the factors most commonly suspected of accelerating degenerative changes in the discs were various occupational physical loading conditions, such as handling of heavy materials, postural loading and vehicular vibration,” said lead researcher Michele Crites-Battié of the University of Alberta’s Faculty of Rehabilitation Medicine.

Drawing on information from 600 participants in the population-based Finnish Twin Cohort—147 pairs of identical and 153 pairs of fraternal male twins—the Twin Spine Study has turned the dominant “injury model” approach to disc degeneration on its head. Researchers from Canada, Finland, the United States and the United Kingdom compared identical twin siblings who differed greatly in their exposure to a suspected risk factor for back problems; for example, one of the twins had a sedentary job while the other had heavy occupational physical demands, or one routinely engaged in occupational driving while the other did not. The studies yielded startling results, suggesting that genetics play a much larger role in disc degeneration than previously thought.

Despite extraordinary differences between identical twin siblings in occupational and leisure-time physical loading conditions throughout adulthood, surprisingly little effect on disc degeneration was observed. The findings indicated that while physical loading—handling heavy loads, bending, twisting and static work in awkward postures—appears to influence disc degeneration, the effects are very modest. During the course of the exposure-discordant twin studies, said Crites-Battié, the observation that struck anyone who viewed the twin sibling images side-by-side was the strong resemblance in disc degeneration, not only in the degree of degeneration, but also in the types of findings and spinal levels involved.

The Twin Spine Study is far from over: having found evidence that genetics may play an overlooked role in disc degeneration, the team of North American and European is now working to identify the specific genes and biological mechanisms influencing disc degeneration and back pain problems; understanding how degeneration progresses over time; and differentiating normal, inconsequential changes from degenerative changes that lead to pain.

“This advance in the understanding of disc degeneration provides a foundation from which to develop new hypotheses and more fruitful research that may help shed light on one of the most common and costly musculoskeletal conditions facing the developed countries of the world,” said Crites-Battié.

Kris Connor | alfa
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>