Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parkinson transplants survive at least 16 years

09.04.2008
Transplanted cells can survive in the brain for over one and half decade. However, some of the transplanted cells developed Parkinson-like features which is very surprising.

These are the main findings of a study on grafting of new neurons to the brain in patients with Parkinson’s disease. The study, headed by a team of researchers from Lund University in collaboration with London scientists, has been published in a recent issue of Nature Medicine.

'Previous studies have shown that transplanted dopamine cells can clearly improve speed of movement, reduce rigidity and the need for medication for at least a decade', says Jia-Yi Li, Associate Professor of Neurobiology, Neuronal Survival Unit at Lund University. 'We now see that they also are alive in large numbers, which is very exciting.'

However, in addition to the long-term survival of transplanted neurons, the scientists also found that Parkinson’s disease changes may appear inside a graft. This suggests that the disease mechanism is able to transfer gradually from a sick to a healthy cell in the brain.

'Our results suggest that key features of Parkinson's disease pathology slowly transfer from the patient’s brains to the healthy nerve cells in the transplant', says Patrik Brundin, Professor of Neuroscience and Head of the Neuronal Survival Unit at Lund University.

'We still do not know the precise cellular mechanisms, but the findings open up new exciting lines of research. If we can crack the mechanism, we may be able to devise treatments that prevent or slow disease progression in the future.'

The research group at Lund University and Lund University Hospital has earlier shown that the transplanted cells are functional for a decade. The new findings, that extend the survival time even further, mean that cell therapy is still a viable possibility.

'Although we have now found that the grafted cells may be affected by the disease, the pathological changes appear late. In my view transplantation of dopamine cells, probably generated from stem cells, therefore remains a promising and important novel strategy for the treatment of patients with Parkinson’s disease', says Olle Lindvall, Professor of Neurology at Lund University Hospital.

Ingela Bjoerck | alfa
Further information:
http://www.nature.com/nm/journal/vaop/ncurrent/abs/nm1746.html
http://www.lu.se

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>