Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers learn how signaling molecule orchestrates breast cancer's spread

07.04.2008
A study led by researchers at Memorial Sloan-Kettering Cancer Center (MSKCC) has uncovered how breast tumors use a particular type of molecule to promote metastasis -- the spread of cancer cells. Metastasis is the cause of approximately 90 percent of all cancer-related deaths. The study is published in the April 4, 2008, issue of Cell.

The work examines how cells in the body communicate with each other through cytokines, signaling molecules that direct a wide range of activities such as cell growth and movement. One important cytokine -- transforming growth factor -a (TGF-a) -- normally suppresses tumor development.

However, according to the findings, cancer cells in humans are able to misuse these cytokines for their own gain by compelling TGF-a to enhance a tumor's ability to spread instead of suppressing it.

Using computer-based analysis to classify patient tumor samples based on their levels of TGF-a, the researchers observed that about half of all breast tumors contained active TGF-a. The affected tumors were found to be more aggressive and more likely to metastasize to the lung during the course of the patients' disease.

Using mice for their next set of experiments, the researchers discovered that TGF-a prompts breast cancer cells to make a second cytokine, known as angiopoietin-like 4 (ANGPTL4), which enhances the ability of the cancer to spread to the lungs through the blood circulation. The results show that the breast cancer cells use ANGPTL4 to break down the thin capillaries of the lung, thus facilitating their escape into the lung tissue.

"Our work shows that TGF-a enhances human breast cancer metastasis and reveals how tumor cells learn to exploit cytokines by making them work as a relay system to promote the spread of breast cancer," said the study's senior author, Joan Massagu¨¦, PhD, Chairman of the Cancer Biology and Genetics Program at MSKCC and a Howard Hughes Medical Institute investigator.

The researchers are now seeking to determine whether TGF-a and ANGPTL4 may also be active in other types of tumors, and are evaluating ways to interfere with the action of these cytokines to prevent metastasis in cancer patients.

"Deciphering how cancer cells take advantage of these cytokines is essential for developing therapies that can prevent this process," said the study's lead author David Padua, a graduate student in Dr. Massagu¨¦'s lab. "Because cytokines act outside of cells they can be more easily targeted by drugs that block their activity."

The study provides support for developing agents to interfere with TGF-a in order to prevent and treat cancer metastasis. It points at ANGPTL4 as a possible target to interrupt the TGF-a stimulus of metastasis without interfering with the molecule's beneficial effects. Several pharmaceutical companies are currently testing TGF-a-blocking compounds in clinical trials as candidate drugs against breast cancer, melanoma, and other types of cancer.

Esther Napolitano | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>