Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Working Memory Has Limited 'Slots'

07.04.2008
A new study by researchers at UC Davis shows how our very short-term "working memory," which allows the brain to stitch together sensory information, operates. The system retains a limited number of high-resolution images for a few seconds, rather than a wider range of fuzzier impressions.

Humans rarely move their eyes smoothly. As our eyes flit from object to object, the visual system briefly shuts off to cut down visual "noise," said Steven J. Luck, professor of psychology at the UC Davis Center for Mind and Brain. So the brain gets a series of snapshots of about a quarter-second, separated by brief gaps.

The working memory system smoothes out this jerky sequence of images by retaining memories from each snapshot so that they can be blended together. These memories typically last just a few seconds, Luck said.

"We use working memory hundreds of thousands of times each day without noticing it," Luck said. The system also seems to be linked to intelligence, he said.

Luck and postdoctoral researcher Weiwei Zhang wanted to test whether working memory stores a fixed, limited number of high-resolution images, or is a more fluid system that can store either a small number of high-resolution images or a large number of low-resolution images.

They showed volunteers a pattern of colored squares for a tenth of a second, and then asked them to recall the color of one of the squares by clicking on a color wheel. Sometimes the subjects would be completely unable to remember the color, and they just clicked at a random location on the color wheel. When subjects could remember the square, however, they usually clicked on a color that was quite close to the original color.

Zhang developed a technique for using these responses to quantify how many items a subject could store in memory and how precise those memories were.

"It's a trivial task, but it took us years to realize that we should use it," Luck said. The researchers began the work at the University of Iowa; Luck moved to UC Davis in 2006, and Zhang in 2007.

The evidence shows that working memory acts like a high-resolution camera, retaining three or four features in high detail. Those features allow the brain to link successive images together. However, while most digital cameras allow the user to choose a lower resolution and therefore store more images, the resolution of working memory appears to be constant for a given individual. Individuals do differ in the resolution of each feature and the number of features that can be stored.

People who can store more information in working memory have higher levels of "fluid intelligence," the ability to solve novel problems, Luck said. Working memory is also important in keeping track of objects that are temporarily blocked from view, and it appears to be used when we need to recognize objects shown in unfamiliar views.

Work by Lisa M. Oakes, another psychology professor at UC Davis and colleagues has shown that very young infants have fairly primitive working memory abilities. Between the ages of 6 and 10 months, however, they rapidly develop a much more adult-like working memory system.

Outside the visual domain, working memory is used for storing alternatives or intermediate values, for example when adding a string of numbers together, Luck said. It also appears to play an important role in learning new words, perhaps by allowing the sound of a new word to remain active in the listener's brain until a long-term memory of the word can be formed.

Luck compared the working memory system to the internal memory registers on a computer chip that allow it to make a series of calculations in between referring to the main memory. Our more familiar long-term memory, in contrast, can be used to store large quantities of information for long periods of time, but it is accessed much more slowly, like a computer's hard drive.

Luck and Zhang are now interested in how working memory operates in people with conditions such as attention deficit/hyperactivity disorder and schizophrenia, and those who have problems in perception and cognition. The paper is published online April 2 by the journal Nature, and the work was supported by grants from the National Institute of Mental Health.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>