Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Models look good when predicting climate change

04.04.2008
They project about 7 degrees Fahrenheit warming over a century

The accuracy of computer models that predict climate change over the coming decades has been the subject of debate among politicians, environmentalists and even scientists. A new study by meteorologists at the University of Utah shows that current climate models are quite accurate and can be valuable tools for those seeking solutions on reversing global warming trends. Most of these models project a global warming trend that amounts to about 7 degrees Fahrenheit over the next 100 years.

The study titled "How Well do Coupled Models Simulate Today’s Climate?" is due to be published this Friday in the Bulletin of the American Meteorological Society. In the study, co-authors Thomas Reichler and Junsu Kim from the Department of Meteorology at the University of Utah investigate how well climate models actually do their job in simulating climate. To this end, they compare the output of the models against observations for present climate. The authors apply this method to about 50 different national and international models that were developed over the past two decades at major climate research centers in China, Russia, Australia, Canada, France, Korea, Great Britain, Germany, and the United States. Of course, also included is the very latest model generation that was used for the very recent (2007) report of the Intergovernmental Panel on Climate Change (IPCC).

“Coupled models are becoming increasingly reliable tools for understanding climate and climate change, and the best models are now capable of simulating present-day climate with accuracy approaching conventional atmospheric observations,” said Reichler. “We can now place a much higher level of confidence in model-based projections of climate change than in the past.”

The many hours of studying models and comparing them with actual climate changes fulfills the increasing wish to know how much one can trust climate models and their predictions. Given the significance of climate change research in public policy, the study’s results also provide important response to critics of global warming. Earlier this year, working group one of the IPCC released its fourth global warming report. The University of Utah study results directly relate to this highly publicized report by showing that the models used for the IPCC paper have reached an unprecedented level of realism.

Another important aspect of the research is that climate models built in the U.S. are now some of the best models worldwide. Increased efforts in the U.S. over the past few years to build better climate models have paid off, and according to the authors' measure of reliability, one of the U.S. models is now one of the leading climate models worldwide.

Although model-based projections of future climate are now more credible than ever before, the authors note they have no way to say exactly how reliable those projections are. There are simply too many unknowns involved in the future evolution of climate, such as how much humans will curb their future greenhouse gas emissions.

Thomas Reichler | EurekAlert!
Further information:
http://www.utah.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>