Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Models look good when predicting climate change

04.04.2008
They project about 7 degrees Fahrenheit warming over a century

The accuracy of computer models that predict climate change over the coming decades has been the subject of debate among politicians, environmentalists and even scientists. A new study by meteorologists at the University of Utah shows that current climate models are quite accurate and can be valuable tools for those seeking solutions on reversing global warming trends. Most of these models project a global warming trend that amounts to about 7 degrees Fahrenheit over the next 100 years.

The study titled "How Well do Coupled Models Simulate Today’s Climate?" is due to be published this Friday in the Bulletin of the American Meteorological Society. In the study, co-authors Thomas Reichler and Junsu Kim from the Department of Meteorology at the University of Utah investigate how well climate models actually do their job in simulating climate. To this end, they compare the output of the models against observations for present climate. The authors apply this method to about 50 different national and international models that were developed over the past two decades at major climate research centers in China, Russia, Australia, Canada, France, Korea, Great Britain, Germany, and the United States. Of course, also included is the very latest model generation that was used for the very recent (2007) report of the Intergovernmental Panel on Climate Change (IPCC).

“Coupled models are becoming increasingly reliable tools for understanding climate and climate change, and the best models are now capable of simulating present-day climate with accuracy approaching conventional atmospheric observations,” said Reichler. “We can now place a much higher level of confidence in model-based projections of climate change than in the past.”

The many hours of studying models and comparing them with actual climate changes fulfills the increasing wish to know how much one can trust climate models and their predictions. Given the significance of climate change research in public policy, the study’s results also provide important response to critics of global warming. Earlier this year, working group one of the IPCC released its fourth global warming report. The University of Utah study results directly relate to this highly publicized report by showing that the models used for the IPCC paper have reached an unprecedented level of realism.

Another important aspect of the research is that climate models built in the U.S. are now some of the best models worldwide. Increased efforts in the U.S. over the past few years to build better climate models have paid off, and according to the authors' measure of reliability, one of the U.S. models is now one of the leading climate models worldwide.

Although model-based projections of future climate are now more credible than ever before, the authors note they have no way to say exactly how reliable those projections are. There are simply too many unknowns involved in the future evolution of climate, such as how much humans will curb their future greenhouse gas emissions.

Thomas Reichler | EurekAlert!
Further information:
http://www.utah.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>