Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CO2 emission reduction assumptions overly optimistic

04.04.2008
Technological challenges of reducing CO2 underestimated by IPCC, according to CU-Boulder-led study

Reducing global emissions of carbon dioxide this century is going to be more challenging than society has been led to believe, according to a new research commentary article appearing April 3 in Nature.

The authors, from the University of Colorado at Boulder, the National Center for Atmospheric Research in Boulder and McGill University in Montreal, said the technological challenges of reducing CO2 emissions have been significantly underestimated by the Intergovernmental Panel on Climate Change. The study concludes the IPCC is overly optimistic in assuming that, even without action by policymakers, new technologies will result in dramatic reductions in the growth of future emissions.

Recent changes in “carbon intensity” -- CO2 emissions per unit of energy consumption -- already are higher than those predicted by the IPCC because of rapid economic development, said lead author and CU-Boulder Professor Roger Pielke Jr. of the environmental studies program. In Asia, for instance, the demands of more energy-intensive economies are being met with conventional fossil-fuel technologies, a process expected to continue there for decades and eventually move into Africa.

The IPCC underestimate of carbon intensity is due in part to the panel’s differing scenarios tied to global emission changes expected to occur spontaneously and those driven by climate policies, according to the Nature authors. Titled “Dangerous Assumptions,” the Nature commentary was co-authored by Senior Scientist Tom Wigley of NCAR’s Climate and Global Dynamics Division and economics Professor Christopher Green of McGill University’s Global Environmental and Climate Change Center.

“According to the IPCC report, the majority of the emission reductions required to stabilize CO2 concentrations are assumed to occur automatically,” said Pielke. “Not only is this reduction unlikely to happen under current policies, we are moving in the opposite direction right now. We believe these kind of assumptions in the analysis blind us to reality and could potentially distort our ability to develop effective policies.”

Stabilization of atmospheric concentrations of CO2 and other greenhouse gases was the primary objective of the 1992 United Nations Framework Convention on Climate Change approved by almost all countries, including the United States, said Wigley.

“Stabilization is a more daunting challenge than many realize and requires a radical ‘decarbonization’ of energy systems,” said Wigley. “Global energy demand is projected to grow rapidly, and these huge new demands must be met by largely carbon-neutral energy sources -- sources that either do not use fossil fuels or which capture and store any emitted CO2.”

Calculations by the Nature authors show that at least two-thirds of the amount of carbon that has to be removed from the energy supply in order to stabilize atmospheric CO2 concentrations at roughly 500 parts per million is assumed to occur automatically by the IPCC authors. Atmospheric CO2 levels are currently at about 390 parts per million.

Enormous advances in energy policy in the coming decades will be needed to stabilize atmospheric concentrations of CO2 at levels currently considered “acceptable,” the Nature authors concluded.

Unlike the IPCC authors, who built in assumptions about future “spontaneous” technological innovations, the Nature commentary authors began with a set of “frozen technology” scenarios as baselines -- scenarios in which energy technologies are assumed to stay at present levels. “With a frozen technology approach, the full scope of the carbon-neutral technology challenge is placed into clear view,” said Green.

“In the end, there is no question whether technological innovation is necessary -- it is,” the authors wrote in Nature. “The question is, to what degree should policy focus explicitly on motivating such innovation? The IPCC plays a risky game in assuming that spontaneous advances in technological innovation will carry most of the burden of achieving future emissions reductions, rather than focusing on those conditions that are necessary and sufficient for those innovations to occur.”

Roger Pielke Jr. | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>