Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why we don't always learn from our mistakes

03.04.2008
If you are struggling to retrieve a word that you are certain is on the tip of your tongue, or trying to perfect a slapshot that will send your puck flying into a hockey net, or if you keep stumbling over the same sequence of notes on the piano, be warned: you might be unconsciously creating a pattern of failure, a new study reveals.

The research appears today in The Quarterly Journal of Experimental Psychology.

Karin Humphreys, assistant professor in McMaster University’s Faculty of Science, and Amy Beth Warriner, an undergraduate student in the Department of Psychology, Neuroscience & Behaviour, suggest that most errors are repeated because the very act of making a mistake, despite receiving correction, constitutes the learning of that mistake.

Humphreys says the research came about as a result of her own experiences of repeatedly getting into a tip-of-the-tongue (or TOT) state on particular words.

“This can be incredibly frustrating – you know you know the word, but you just can’t quite get it,” she said. “And once you have it, it is such a relief that you can’t imagine ever forgetting it again. But then you do. So we began thinking about the mechanisms that might underlie this phenomenon. We realized that it might not be a case of everyone having certain words that are difficult for them to remember, but that by getting into a tip-of-the-tongue state on a particular word once, they actually learn to go into that incorrect state when they try to retrieve the same word again.”

Humphreys and Warriner tested 30 students to see if their subjects could retrieve words after being given a definition. e.g. “What do you call an instrument for performing calculations by sliding beads along rods or grooves” (Answer: abacus). They then had to say whether they knew the answer, didn’t know it, or were in a TOT. If they were in a TOT, they were randomly assigned to spend either 10 or 30 seconds trying to retrieve the answer before finally being shown it. Two days later, subjects were tested on those same words again. One would assume that having been shown the correct word on Day 1 the subject would still remember it on Day 2. Not so. The subjects tended to TOT on the same words as before, and were especially more likely to do so if they had spent a longer time trying to retrieve them The longer time in the error state appears to reinforce that incorrect pattern of brain activation that caused the error.

“It’s akin to spinning one’s tires in the snow: despite your perseverance you’re only digging yourself a deeper rut,” the researchers explained.

There might be a strategy to solve the recurrence of tip-of-the-tongue situations, which is what Warriner is currently working on for her honours thesis.

"If you can find out what the word is as soon as possible—by looking it up, or asking someone—you should actually say it to yourself,” says Humphreys. “It doesn't need to be out loud, but you should at least say it to yourself. By laying down another procedural memory you can help ameliorate the effects of the error. However, what the research shows is that if you just can't figure it out, stop trying: you’re just digging yourself in deeper."

Jane Christmas | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>