Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vive the vole!

03.04.2008
Portable and accurate body composition measurements mean a longer life for rodents used in field and laboratory research

The gathering of data for research involving an animal usually involves invasive procedures or death for the experimental animals. But critical data may now be collected through a nonlethal procedure, according to a new paper for the forthcoming issue of Physiological and Biochemical Zoology.

In the paper “Dual-Energy X-Ray Absorbtiometry (DXA) Can Accurately and Non-Destructively Measure the Body Composition of Small, Free-Living Rodents,” Kalb Stevenson and Dr. Ian G. van Tets reveal that they have discovered that they can take a wide range of measurements accurately with a portable DXA device. These body composition measurements in small rodents—water, protein, minerals, lean, and fat—are critical for dietary and environmental research. Previous measurements taken in the field, though not lethal, relied on length and body mass calculations, which are often inaccurate; methods used on laboratory animals are often lethal, precluding longitudinal research.

Differing methods used in fieldwork and in the laboratory limited scientific collaboration. Legal and/or ethical barriers against invasive research on endangered species further hampered crucial studies. “We needed a way to accurately and consistently measure the body condition of small mammals recaptured at different times of the year and could not do so using traditional means” said Dr. van Tets “so we decided to test whether DXA analysis could solve this problem”.

In their NSF-funded study of the northern redbacked vole (Clethrionomys rutilus), Stevenson and van Tets took a broad set of measurements accurately by employing DXA, using X-rays and mathematical formulas to noninvasively measure body content. Even transponder tags used to track the rodents in the wild did not interfere with their measurement of fat mass, lean mass, bone mineral content, bone mineral density, and fat-free mass.

“DXA worked better than we expected” Stevenson said “The measurements were consistent with those obtained via chemical (proximate) analysis and required nothing more than the machine itself, a laptop, and a power source. As subjects are not harmed, we can use this technology to track changes in individual animals over time and already have DXA-based projects underway studying the effects of season and/or hibernation on the body composition of animals as diverse as voles, ground squirrels, and black bears.”

Portable DXA devices provide the opportunity for quick measurements in the field and the ability to take measurements over time, allowing researchers to account for environmental factors. And, finally, field researchers and laboratory researchers will be able to collaborate using comparable data, allowing an increased degree of scientific rigor in comparative physiological studies.

Rudy Faust | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

New drug reduces transplant and mortality rates significantly in patients with hepatitis C

29.05.2017 | Statistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>