Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomic profiling of breast tumors might determine prognosis, treatment

03.04.2008
Combining a breast cancer patient's clinical characteristics with a genomic profile of her tumor may provide important information for predicting an individual patient’s prognosis and accurately guiding treatment options, according to a new study led by researchers in the Duke Comprehensive Cancer Center (DCCC) and Duke’s Institute for Genome Sciences & Policy (IGSP).

“Our goal is to treat patients on a more individualized basis, matching the right drugs with the right patients,” said Anil Potti, M.D., an oncologist and researcher in the DCCC and the IGSP. “The combination of these two methods, one of which uses the clinical description of patient’s breast cancer and the other which looks at gene expression at a molecular level in a patient’s tumor, may allow us to do that with unprecedented accuracy. This represents a robust approach to personalizing treatment strategies in patients suffering from breast cancer.”

The findings appear in the April 2, 2008 issue of the Journal of the American Medical Association. The study was funded by the Jimmy V Foundation, the American Cancer Society and the Emilene Brown Research Fund.

Researchers looked at almost 1000 breast tumor samples, and corresponding patient data, and applied existing technology -- a computerized system called Adjuvant! -- to assess clinical characteristics and make predictions of recurrence based on them. By then comparing gene expression in these tumor samples, the researchers were able to see specific genomic patterns among patients with aggressive cancers, and those whose cancers were less likely to recur.

“We knew from previous studies that Adjuvant! tends to overestimate disease recurrence in younger patients,” Potti said. “We hypothesized that genomic profiling could be a complementary tool that would more precisely define clinical outcomes, and could also help to aid in selecting the right drug for a given patient.”

By using the clinical and genomic tools together and cross-comparing data, the researchers were able to not only say that a particular patient has a “high” risk of recurrence, but they could be more specific; for instance, they could predict that a particular patient was 90 percent likely to see her cancer recur, Potti said.

“This is important because with this data, we might decide to treat this person more aggressively even than someone else who is considered ‘high risk’ but may have only a 60 percent likelihood of recurrence,” he said. “Moreover, we can identify specific options for chemotherapy in such patients as well, by correlating gene expression in a tumor with its response, or non-response, to certain chemotherapies.”

The findings have already been put into practice as part of several clinical trials at Duke for cancer patients. A tumor’s genomic make-up is being used to dictate the choice between a traditional chemotherapy regimen and an alternate drug that is more likely to benefit an individual patient. One such trial involving almost 300 patients with breast cancer is expected to start at Duke this spring.

Lauren Williams | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>