Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomic profiling of breast tumors might determine prognosis, treatment

03.04.2008
Combining a breast cancer patient's clinical characteristics with a genomic profile of her tumor may provide important information for predicting an individual patient’s prognosis and accurately guiding treatment options, according to a new study led by researchers in the Duke Comprehensive Cancer Center (DCCC) and Duke’s Institute for Genome Sciences & Policy (IGSP).

“Our goal is to treat patients on a more individualized basis, matching the right drugs with the right patients,” said Anil Potti, M.D., an oncologist and researcher in the DCCC and the IGSP. “The combination of these two methods, one of which uses the clinical description of patient’s breast cancer and the other which looks at gene expression at a molecular level in a patient’s tumor, may allow us to do that with unprecedented accuracy. This represents a robust approach to personalizing treatment strategies in patients suffering from breast cancer.”

The findings appear in the April 2, 2008 issue of the Journal of the American Medical Association. The study was funded by the Jimmy V Foundation, the American Cancer Society and the Emilene Brown Research Fund.

Researchers looked at almost 1000 breast tumor samples, and corresponding patient data, and applied existing technology -- a computerized system called Adjuvant! -- to assess clinical characteristics and make predictions of recurrence based on them. By then comparing gene expression in these tumor samples, the researchers were able to see specific genomic patterns among patients with aggressive cancers, and those whose cancers were less likely to recur.

“We knew from previous studies that Adjuvant! tends to overestimate disease recurrence in younger patients,” Potti said. “We hypothesized that genomic profiling could be a complementary tool that would more precisely define clinical outcomes, and could also help to aid in selecting the right drug for a given patient.”

By using the clinical and genomic tools together and cross-comparing data, the researchers were able to not only say that a particular patient has a “high” risk of recurrence, but they could be more specific; for instance, they could predict that a particular patient was 90 percent likely to see her cancer recur, Potti said.

“This is important because with this data, we might decide to treat this person more aggressively even than someone else who is considered ‘high risk’ but may have only a 60 percent likelihood of recurrence,” he said. “Moreover, we can identify specific options for chemotherapy in such patients as well, by correlating gene expression in a tumor with its response, or non-response, to certain chemotherapies.”

The findings have already been put into practice as part of several clinical trials at Duke for cancer patients. A tumor’s genomic make-up is being used to dictate the choice between a traditional chemotherapy regimen and an alternate drug that is more likely to benefit an individual patient. One such trial involving almost 300 patients with breast cancer is expected to start at Duke this spring.

Lauren Williams | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>