Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genomic profiling of breast tumors might determine prognosis, treatment

Combining a breast cancer patient's clinical characteristics with a genomic profile of her tumor may provide important information for predicting an individual patient’s prognosis and accurately guiding treatment options, according to a new study led by researchers in the Duke Comprehensive Cancer Center (DCCC) and Duke’s Institute for Genome Sciences & Policy (IGSP).

“Our goal is to treat patients on a more individualized basis, matching the right drugs with the right patients,” said Anil Potti, M.D., an oncologist and researcher in the DCCC and the IGSP. “The combination of these two methods, one of which uses the clinical description of patient’s breast cancer and the other which looks at gene expression at a molecular level in a patient’s tumor, may allow us to do that with unprecedented accuracy. This represents a robust approach to personalizing treatment strategies in patients suffering from breast cancer.”

The findings appear in the April 2, 2008 issue of the Journal of the American Medical Association. The study was funded by the Jimmy V Foundation, the American Cancer Society and the Emilene Brown Research Fund.

Researchers looked at almost 1000 breast tumor samples, and corresponding patient data, and applied existing technology -- a computerized system called Adjuvant! -- to assess clinical characteristics and make predictions of recurrence based on them. By then comparing gene expression in these tumor samples, the researchers were able to see specific genomic patterns among patients with aggressive cancers, and those whose cancers were less likely to recur.

“We knew from previous studies that Adjuvant! tends to overestimate disease recurrence in younger patients,” Potti said. “We hypothesized that genomic profiling could be a complementary tool that would more precisely define clinical outcomes, and could also help to aid in selecting the right drug for a given patient.”

By using the clinical and genomic tools together and cross-comparing data, the researchers were able to not only say that a particular patient has a “high” risk of recurrence, but they could be more specific; for instance, they could predict that a particular patient was 90 percent likely to see her cancer recur, Potti said.

“This is important because with this data, we might decide to treat this person more aggressively even than someone else who is considered ‘high risk’ but may have only a 60 percent likelihood of recurrence,” he said. “Moreover, we can identify specific options for chemotherapy in such patients as well, by correlating gene expression in a tumor with its response, or non-response, to certain chemotherapies.”

The findings have already been put into practice as part of several clinical trials at Duke for cancer patients. A tumor’s genomic make-up is being used to dictate the choice between a traditional chemotherapy regimen and an alternate drug that is more likely to benefit an individual patient. One such trial involving almost 300 patients with breast cancer is expected to start at Duke this spring.

Lauren Williams | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>