# Forum for Science, Industry and Business

Search our Site:

## Team explains 'the wallpaper problem'

01.04.2008
Work could have industrial applications

Frustrated by tape that won't peel off the roll in a straight line? Angry at wallpaper that refuses to tear neatly off the wall?

A new study reveals why these efforts can be so aggravating. Wallpaper is not out to foil you-it's just obeying the laws of physics, according to a team of researchers from the Centre National de la Recherche Scientifique (CNRS) in Paris, the Universidad de Santiago, Chile, and MIT.

The report, published in the March 30 online issue of Nature Materials, sheds light on a phenomenon many people have experienced, which the researchers dubbed “the wallpaper problem.”

“You want to redecorate your bedroom, so you yank down the wallpaper. You wish that the flap would tear all the way down to the floor, but it comes together in a triangle and you have to start all over again,” said Pedro Reis, one of the authors of the paper and an applied mathematics instructor at MIT.

This pattern, where two cracks propagate toward each other and meet at a point, is extremely robust. It applies not only to wallpaper but other adhesives such as tape, as well as nonadhesive plastic sheets such as the shrink-wrap that envelops compact discs. It even extends to fruit: The skin on a tomato or a grape typically forms a triangle when peeled off.

“This has happened to everyone. it's frustrating,” said Reis, who collaborated with Enrique Cerda and Eugenio Hamm of the Universidad de Santiago, Benoit Roman of CNRS and Michael LeBlanc of the University of Chicago.

The team found that those ubiquitous triangular tears arise from interactions between three inherent properties of adhesive materials: elasticity (stiffness), adhesive energy (how strongly the adhesive sticks to a surface) and fracture energy (how tough it is to rip).

The researchers developed a formulation that predicts the angle of the triangle formed, based on those three properties.

They also figured out just how those triangular tears arise. As the strip is pulled, energy builds up in the fold that forms where the tape is peeling from the surface. The tape can release that energy in two ways: by unpeeling from its surface and by becoming narrower, both of which it does.

In a possible industrial application, materials engineers could use this method to calculate one of the three key properties, if the other two are known. This could be particularly useful in microtechnologies, such as stretchable electronics, where the characterization of thin material properties is very difficult.

Reis, who now works in MIT's Applied Mathematics Laboratory, and his collaborators at CNRS and Universidad de Santiago got the idea for the project after noticing consistent tearing patterns in plastic sheets such as the plastic wrapping of CDs.

The researchers tried controlled experimental versions of the same process in their lab and got the same results. “This shape is really robust, so there must be something fundamental going on that gives rise to these shapes,” Reis said.

However, the shapes formed by tearing nonadhesive sheets proved difficult to study because they are not perfect triangles, and without adhesion, the physics of the problem is more complicated. Instead, the researchers turned their attention to adhesives, which do form perfect triangles when torn.

The triangular shapes can also be seen in the work of French artist Jacques Villeglé. His art consists of posters taken from the streets of Paris and other French cities, complete with the same sort of rips that the researchers studied. One of the posters may be featured on the cover of Nature Materials to illustrate the team's paper.

Torn posters, tape and tomato skins may seem like strange research topics for physicists and applied mathematicians, but it's perfectly normal to Reis and his colleagues, who draw inspiration from an array of everyday objects.

Such real-world applications are not only fun to study, but “we can really learn things that will be useful for industry and help us understand the everyday world around us. It is also a great way to motivate students to be interested in science,” Reis said.

Elizabeth Thomson | alfa
Further information:
http://www.mit.edu

### More articles from Studies and Analyses:

WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

### Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

### Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

### Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

### Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

### Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Industry & Economy