Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Are Teenage Brains Really Different?

MRI Studies Show Brain Changes in the Adolescent Brain Impact Cognition, Emotion and Behavior

Many parents are convinced that the brains of their teenage offspring are different than those of children and adults. New data confirms that this is the case. An article by Jay N. Giedd, MD, of the National Institute of Mental Health (NIMH), published in the April 2008 issue of the Journal of Adolescent Health describes how brain changes in the adolescent brain impact cognition, emotion and behavior.

Dr. Giedd reviews the results from the NIMH Longitudinal Brain Imaging Project. This study and others indicate that gray matter increases in volume until approximately the early teens and then decreases until old age. Pinning down these differences in a rigorous way had been elusive until MRI was developed, offering the capacity to provide extremely accurate quantifications of brain anatomy and physiology without the use of ionizing radiation.

Writing in the article, Dr. Giedd comments, “Adolescence is a time of substantial neurobiological and behavioral change, but the teen brain is not a broken or defective adult brain. The adaptive potential of the overproduction/selective elimination process, increased connectivity and integration of disparate brain functions, changing reward systems and frontal/limbic balance, and the accompanying behaviors of separation from family of origin, increased risk taking, and increased sensation seeking have been highly adaptive in our past and may be so in our future. These changes and the enormous plasticity of the teen brain make adolescence a time of great risk and great opportunity.”

In an accompanying editorial, Elizabeth R. McAnarney MD, Department of Pediatrics, University of Rochester Medical Center, comments, “Finally neuroscientists are able to go under the ‘…leathery membrane, surrounded by a protective moat of fluid, and completely encased in bone…’ to provide new insights into brain development. Changes in the brain during childhood and adolescent development that are being documented through exquisite imaging by Giedd and others hold the promise for the development of hypotheses about the potential origins of behaviors that we have observed clinically for years….”

“Novelty seeking/sensation seeking and risk taking,” Dr. McAnarney continues, “is the basis for considerable growth during adolescence, as well as for the seemingly reckless behavior of some adolescents. Novelty seeking/sensation seeking and risk taking are topics of growing interest as adolescent brain development is defined better and as morbidity from adolescent risk taking mounts….The implication of our growing knowledge of brain–behavior mechanisms of adolescent conditions should provide insights into the risk of particular adolescents for morbidity and mortality. Preliminary data are promising so that as we begin to understand the complexity of and specificity of each of these conditions, we shall be able to diagnose and treat conditions earlier.”

The NIMH Longitudinal Brain Imaging Project began in 1989. Participants visit the NIMH at approximately two-year intervals for brain imaging, neuropsychological and behavioral assessment and collection of DNA. As of September 2007, approximately 5000 scans from 2000 subjects have been acquired. Of these, 387 subjects, aged 3 to 27 years, have remained free of any psychopathology and serve as the models for typical brain development.

Three themes have emerged from this and other studies in this new era of adolescent neuroscience. The first is functional and structural increases in connectivity and integrative processing as distributed brain modules become more and more integrated. Using a literary metaphor, maturation would not be the addition of new letters but rather of combining earlier formed letters into words, and then words into sentences and then sentences into paragraphs.

The second is a general pattern of childhood peaks of gray matter (frontal lobe, parietal lobe, temporal lobe and occipital lobe) followed by adolescent declines. As parts of the brain are overdeveloped and then discarded, the structure of the brain becomes more refined.

The third theme is a changing balance between limbic/subcortical and frontal lobe functions that extends well into young adulthood as different cognitive and emotional systems mature at different rates. The cognitive and behavioral changes taking place during adolescence may be understood from the perspective of increased “executive” functioning, a term encompassing a broad array of abilities, including attention, response inhibition, regulation of emotion, organization and long-range planning.

The article is “The Teen Brain: Insights from Neuroimaging” by Jay N. Giedd, MD. The editorial is “Adolescent Brain Development: Forging New Links?” by Elizabeth R. McAnarney, MD. Both appear in the Journal of Adolescent Health, Volume 42, Issue 4 (April 2008) published by Elsevier.

William S. Deutsch | alfa
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>