Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria Infection Of The Liver And In Pregnancy: Two Key Studies By Igc Researchers

27.03.2008
In two papers published in February and March in the journal PLoS ONE(*), scientists at the Instituto Gulbenkian de Ciência (IGC), in Portugal, have produced important findings towards better understanding malaria infection of the liver, and during pregnancy.

Carlos Penha-Gonçalves and his team, at the Disease Genetics Laboratory, have developed an authentic mouse model of severe malaria in pregnant women. In a separate study, the group identified a genetic region which makes mice less vulnerable to infection of the liver by malaria parasites.

It is estimated that over 50 million pregnancies occur each year in malaria endemic areas. Indeed, pregnancy-associated malaria is one of the major public health burdens in Africa, leading to 100,000 infant deaths annually. Pregnant women who are infected with the Plasmodium parasite show more critical symptoms of malaria, their pregnancies rarely go to term, the growth of the fetus is delayed, babies have low birth weight and often die during infancy.

Carlos and his team have now developed a mouse model of pregnancy-induced malaria which reliably recapitulates the symptoms of the disease, both in the mother and in the fetus. Using this mouse model, the researchers have already begun to unpick some of the events which may underlie the severity of malaria infection during pregnancy.

Says Carlos, ‘What we have achieved would have been impossible to do in humans, and we hope that our model will now provide clues of key molecules and cells that could be targets for treatment’.

Malaria symptoms occur when the parasite reaches the blood stream. However, before moving to the blood stream, the malaria parasite infects liver cells, where it multiplies manifold. In another key study, Carlos and his team have identified a genetic region on chromosome 17 of mice which appears to make it more difficult for the parasite to expand in the liver cells.

The team noticed that a certain breed of mice that they work with showed poorer expansion of the parasite Plasmodium berghei in the liver, and, subsequently, lower numbers in the blood stream. They used genetic mapping techniques to identify the gene or genes responsible for this effect. They called this region berl1, for berghei liver resistance 1.

Says Lígia Gonçalves, first author of this study, ‘We narrowed it down to a region which contains over 300 genes, and we are now trying to restrict it even further, to test individual candidate genes’.

According to Carlos, the next step will be to look at the human equivalent of the berl1 region in humans, and investigate whether it too is able to convey resistance to liver infection. The researchers will study patients who show asymptomatic liver infections.

This research was supported by the Fundação para a Ciência e a Tecnologia, in Portugal.

Ana Godinho | alfa
Further information:
http://www.igc.gulbenkian.pt

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>