Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria Infection Of The Liver And In Pregnancy: Two Key Studies By Igc Researchers

27.03.2008
In two papers published in February and March in the journal PLoS ONE(*), scientists at the Instituto Gulbenkian de Ciência (IGC), in Portugal, have produced important findings towards better understanding malaria infection of the liver, and during pregnancy.

Carlos Penha-Gonçalves and his team, at the Disease Genetics Laboratory, have developed an authentic mouse model of severe malaria in pregnant women. In a separate study, the group identified a genetic region which makes mice less vulnerable to infection of the liver by malaria parasites.

It is estimated that over 50 million pregnancies occur each year in malaria endemic areas. Indeed, pregnancy-associated malaria is one of the major public health burdens in Africa, leading to 100,000 infant deaths annually. Pregnant women who are infected with the Plasmodium parasite show more critical symptoms of malaria, their pregnancies rarely go to term, the growth of the fetus is delayed, babies have low birth weight and often die during infancy.

Carlos and his team have now developed a mouse model of pregnancy-induced malaria which reliably recapitulates the symptoms of the disease, both in the mother and in the fetus. Using this mouse model, the researchers have already begun to unpick some of the events which may underlie the severity of malaria infection during pregnancy.

Says Carlos, ‘What we have achieved would have been impossible to do in humans, and we hope that our model will now provide clues of key molecules and cells that could be targets for treatment’.

Malaria symptoms occur when the parasite reaches the blood stream. However, before moving to the blood stream, the malaria parasite infects liver cells, where it multiplies manifold. In another key study, Carlos and his team have identified a genetic region on chromosome 17 of mice which appears to make it more difficult for the parasite to expand in the liver cells.

The team noticed that a certain breed of mice that they work with showed poorer expansion of the parasite Plasmodium berghei in the liver, and, subsequently, lower numbers in the blood stream. They used genetic mapping techniques to identify the gene or genes responsible for this effect. They called this region berl1, for berghei liver resistance 1.

Says Lígia Gonçalves, first author of this study, ‘We narrowed it down to a region which contains over 300 genes, and we are now trying to restrict it even further, to test individual candidate genes’.

According to Carlos, the next step will be to look at the human equivalent of the berl1 region in humans, and investigate whether it too is able to convey resistance to liver infection. The researchers will study patients who show asymptomatic liver infections.

This research was supported by the Fundação para a Ciência e a Tecnologia, in Portugal.

Ana Godinho | alfa
Further information:
http://www.igc.gulbenkian.pt

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>