Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria Infection Of The Liver And In Pregnancy: Two Key Studies By Igc Researchers

27.03.2008
In two papers published in February and March in the journal PLoS ONE(*), scientists at the Instituto Gulbenkian de Ciência (IGC), in Portugal, have produced important findings towards better understanding malaria infection of the liver, and during pregnancy.

Carlos Penha-Gonçalves and his team, at the Disease Genetics Laboratory, have developed an authentic mouse model of severe malaria in pregnant women. In a separate study, the group identified a genetic region which makes mice less vulnerable to infection of the liver by malaria parasites.

It is estimated that over 50 million pregnancies occur each year in malaria endemic areas. Indeed, pregnancy-associated malaria is one of the major public health burdens in Africa, leading to 100,000 infant deaths annually. Pregnant women who are infected with the Plasmodium parasite show more critical symptoms of malaria, their pregnancies rarely go to term, the growth of the fetus is delayed, babies have low birth weight and often die during infancy.

Carlos and his team have now developed a mouse model of pregnancy-induced malaria which reliably recapitulates the symptoms of the disease, both in the mother and in the fetus. Using this mouse model, the researchers have already begun to unpick some of the events which may underlie the severity of malaria infection during pregnancy.

Says Carlos, ‘What we have achieved would have been impossible to do in humans, and we hope that our model will now provide clues of key molecules and cells that could be targets for treatment’.

Malaria symptoms occur when the parasite reaches the blood stream. However, before moving to the blood stream, the malaria parasite infects liver cells, where it multiplies manifold. In another key study, Carlos and his team have identified a genetic region on chromosome 17 of mice which appears to make it more difficult for the parasite to expand in the liver cells.

The team noticed that a certain breed of mice that they work with showed poorer expansion of the parasite Plasmodium berghei in the liver, and, subsequently, lower numbers in the blood stream. They used genetic mapping techniques to identify the gene or genes responsible for this effect. They called this region berl1, for berghei liver resistance 1.

Says Lígia Gonçalves, first author of this study, ‘We narrowed it down to a region which contains over 300 genes, and we are now trying to restrict it even further, to test individual candidate genes’.

According to Carlos, the next step will be to look at the human equivalent of the berl1 region in humans, and investigate whether it too is able to convey resistance to liver infection. The researchers will study patients who show asymptomatic liver infections.

This research was supported by the Fundação para a Ciência e a Tecnologia, in Portugal.

Ana Godinho | alfa
Further information:
http://www.igc.gulbenkian.pt

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>