Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rivers great and small can fight pollution, if given chance

13.03.2008
Big rivers typically get the credit for being powerful and mighty, but a sweeping national study released today shows that when it comes to pollution control, even little streams can pack a punch.

Stephen Hamilton, an aquatic ecologist at Michigan State University, studied nine streams that flowed through cities, forests and agricultural land in the Kalamazoo River watershed of southwestern Michigan as part of a nationwide team seeking to understand what happens to the nitrogen that is washed into the water.

The results, published in this week’s issue of Nature, provide the most comprehensive understanding yet of how the complex network of rivers and streams – mighty and small – naturally process nitrogen from the waters before it ends up causing trouble downstream.

“This study presents a picture of unprecedented detail of the extent to which streams can remove nitrate,” Hamilton said. “We also now have a better idea of what makes one stream more efficient at nitrate removal than another.”

The stakes are high. Nitrogen gets into the water as runoff from fertilizers and wastes from human activities. Too much nitrogen can cause noxious algal blooms and lead to oxygen depletion and death of fish and shellfish, as has been recently reported in the Gulf of Mexico.

Rivers and streams naturally can act as the “kidneys of our landscape,” according to lead author Patrick Mulholland of the Oak Ridge National Laboratory and University of Tennessee. They can significantly improve the quality of water, thereby reducing the potential for problems in downstream environments.

Hamilton and his team from MSU and the University of Notre Dame spent three years conducting experiments in which they added small amounts of a harmless, nonradioactive isotope of nitrogen, N-15, into streams. They then were able to track the isotope as it traveled downstream and record what processes removed it from the water.

What they found, which was supported by experiments across 72 streams in eight regions across the United States and Puerto Rico, was that the nitrate was taken up from stream water by tiny organisms such as algae, fungi and bacteria. In addition, a considerable fraction was permanently removed from streams by a bacterial process known as denitrification, which converts nitrate to nitrogen gas that then escapes harmlessly into the atmosphere.

Hamilton said they also learned that not all streams are created equal. Streams that are allowed to meander naturally through a complex channel were more efficient at filtering pollutants than streams that had been engineered to quickly convey water away from farmland or developments.

“What we often do to streams to make them more like drains diminishes their ability to reduce pollutants,” Hamilton said. “Complexity – both biological and physical – helps streams be more effective at removing nitrogen.”

In addition, the effectiveness of streams to remove nitrate was greatest if the streams were not overloaded by nitrogen sources such as fertilizers and wastes from human activities. If overloaded, a stream or river passes nitrogen downstream, where it can cause problems in oceans and coastal waterways.

This appears to put two imperatives at odds – removing water quickly from urban areas or agricultural fields versus trying to reduce pollutants. But Hamilton said there are ways to satisfy both goals, such as directing waters into wetland ponds or buffer strips that allow nature time to gobble the nitrates.

The study, Hamilton said, now presents a comprehensive picture that can help guide stream and river management and land-use planning.

Stephen Hamilton | EurekAlert!
Further information:
http://www.msu.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>