Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low micro-RNA level linked to high gene activity in AML

10.03.2008
A new study suggests that a type of acute leukemia may occur in part because abnormally low levels of one small molecule result in the over-activity of genes important to the disease.

The research involved patients with acute myeloid leukemia (AML) and a gene mutation called NPM1, an alteration seen in about one-third of adult AML cases.

The findings suggest new therapeutic targets for treating the disease and should improve the understanding of AML, researchers say.

The study showed that a type of microRNA – molecules important in controlling cell development and proliferation – regulates two genes whose elevated activity has been linked to leukemia in humans and proven to cause leukemia in mice.

The two genes belong to the Hox family of genes, known to play a critical role in embryonic development and blood-cell development.

The study, led by researchers at the Ohio State University Comprehensive Cancer Center, was published online Feb. 28 in the Proceedings of the National Academy of Sciences.

“We’ve shown that low levels of a microRNA called miR-204 are at least partly responsible for the high activity of these Hox genes,” says first author Dr. Ramiro Garzon, an Ohio State cancer researcher.

“If this is verified, and if we can develop a drug to modulate this microRNA, it may provide a new therapeutic intervention for these patients.”

For this study, the investigators examined microRNAs levels in leukemia cells from 85 patients. They also looked for mutations in two genes in the leukemic cells: NPM1 and FLT3 (pronounced “Flit-3”).

The pattern of microRNA molecules present in the cells enabled the researchers to distinguish the 55 patients with mutated NPM1 genes from those with a normal gene.

Furthermore, 26 of the 85 patients had FLT3 mutations. These cases also had high levels of a microRNA called miR-155. Further experiments showed that while the high levels of miR-155 were closely associated with FLT3 mutations, they were independent of the mutation (i.e., it did not cause the high levels).

“This is significant,” says Garzon, an assistant professor of internal medicine. “We already have drugs that target FLT3, but they are not effective by themselves. This finding suggests that if we develop a drug that targets miR-155, and combine it with a FLT3 inhibitor, we might achieve a more complete response in these patients.”

Garzon and his colleagues are studying that possibility now.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>