Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Low micro-RNA level linked to high gene activity in AML

A new study suggests that a type of acute leukemia may occur in part because abnormally low levels of one small molecule result in the over-activity of genes important to the disease.

The research involved patients with acute myeloid leukemia (AML) and a gene mutation called NPM1, an alteration seen in about one-third of adult AML cases.

The findings suggest new therapeutic targets for treating the disease and should improve the understanding of AML, researchers say.

The study showed that a type of microRNA – molecules important in controlling cell development and proliferation – regulates two genes whose elevated activity has been linked to leukemia in humans and proven to cause leukemia in mice.

The two genes belong to the Hox family of genes, known to play a critical role in embryonic development and blood-cell development.

The study, led by researchers at the Ohio State University Comprehensive Cancer Center, was published online Feb. 28 in the Proceedings of the National Academy of Sciences.

“We’ve shown that low levels of a microRNA called miR-204 are at least partly responsible for the high activity of these Hox genes,” says first author Dr. Ramiro Garzon, an Ohio State cancer researcher.

“If this is verified, and if we can develop a drug to modulate this microRNA, it may provide a new therapeutic intervention for these patients.”

For this study, the investigators examined microRNAs levels in leukemia cells from 85 patients. They also looked for mutations in two genes in the leukemic cells: NPM1 and FLT3 (pronounced “Flit-3”).

The pattern of microRNA molecules present in the cells enabled the researchers to distinguish the 55 patients with mutated NPM1 genes from those with a normal gene.

Furthermore, 26 of the 85 patients had FLT3 mutations. These cases also had high levels of a microRNA called miR-155. Further experiments showed that while the high levels of miR-155 were closely associated with FLT3 mutations, they were independent of the mutation (i.e., it did not cause the high levels).

“This is significant,” says Garzon, an assistant professor of internal medicine. “We already have drugs that target FLT3, but they are not effective by themselves. This finding suggests that if we develop a drug that targets miR-155, and combine it with a FLT3 inhibitor, we might achieve a more complete response in these patients.”

Garzon and his colleagues are studying that possibility now.

Darrell E. Ward | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Development and Fast Analysis of 3D Printed HF Components

19.03.2018 | Trade Fair News

In monogamous species, a compatible partner is more important than an ornamented one

19.03.2018 | Life Sciences

Signaling Pathways to the Nucleus

19.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>