Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killer freeze of '07 illustrates paradoxes of warming climate

07.03.2008
A destructive spring freeze that chilled the eastern United States almost a year ago illustrates the threat a warming climate poses to plants and crops, according to a paper just published in the journal BioScience. The study was led by a team from the Department of Energy's Oak Ridge National Laboratory.

The "Easter freeze" of April 5-9, 2007, blew in on an ill wind. Plants had been sending out young and tender sprouts two to three weeks earlier than normal during an unusually warm March. Plant ecologists, as well as farmers and gardeners, took note of the particularly harsh turn of the weather in early April.

"The warm weather was as much a culprit for the damage as the cold," said lead author Lianhong Gu of ORNL's Environmental Sciences Division.

"We see the paradox in that mild winters and warm, early springs make the plants particularly vulnerable to late-season frosts," Gu said. Gu's team observed satellite images and field data to establish the extent of the 2007 spring freeze. They also assessed the long-term and short-term effects on the terrestrial carbon cycle with respect to plant activity in normal years. Short-term effects were "profound," Gu said.

"In the period just after the freeze we saw a large reduction in the fraction of absorbed photosynthetically active radiation, which is a sensitive indicator of plant growth," he said. "We also noted that the regrowth in the following weeks and months did not result in the levels of plant development in previous years."

Gu's team hypothesized that the freeze could have long-term effects on forest carbon uptake because of damage the cold did to the prematurely developed plant tissues, which could affect future growing seasons. The associated carbon and nutrient losses may affect growth in future years.

Beyond devastated horticultural crops, the study noted that some species suffered more than others. Yellow poplar trees were "surprisingly" slow to put out flushes of new leaves, and white oaks were particularly hard hit with freeze damage to both new leaves and flowers. On the other hand, trees located along shorelines--where the water stores heat--and underneath dense canopies seemed to be protected from the cold.

Compounding the stress on plants, as noted in the International Panel on Climate Change's fourth assessment report, is the prospect of prolonged droughts, which also occurred in the region last summer.

"This freeze should not be viewed as an isolated event; rather, it represents a realistic climate change scenario that has long concerned plant ecologists," Gu said.

Authors on the paper include Gu, Paul Hanson, Dale Kaiser, Mac Post and Bai Yang of ORNL; Ramakrishna Nemani of NASA's Ames Research Center; Stephen G. Pallardy of the University of Missouri at Columbia, and Tilden Meyers of the National Oceanic and Atmospheric Administration's Air Resources Laboratory in Oak Ridge. The DOE Office of Science's Biological and Environmental Research program funded the studies.

ORNL is managed by UT-Battelle for the Department of Energy.

Bill Cabage | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>