Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon study shows just listening to cell phones significantly impairs drivers

07.03.2008
Brain imaging reveals drivers are distracted even if they don't talk

Carnegie Mellon University scientists have shown that just listening to a cell phone while driving is a significant distraction, and it causes drivers to commit some of the same types of driving errors that can occur under the influence of alcohol.

The use of cell phones, including dialing and texting, has long been a safety concern for drivers. But the Carnegie Mellon study, for the first time, used brain imaging to document that listening alone reduces by 37 percent the amount of brain activity associated with driving. This can cause drivers to weave out of their lane, based on the performance of subjects using a driving simulator.

The findings, to be reported in an upcoming issue of the journal Brain Research, show that making cell phones hands-free or voice-activated is not sufficient in eliminating distractions to drivers. “Drivers need to keep not only their hands on the wheel; they also have to keep their brains on the road,” said neuroscientist Marcel Just, director of the Center for Cognitive Brain Imaging.

Other distractions, such as eating, listening to the radio or talking with a passenger, also can divert a driver. Though it is not known how these activities compare to cell phone use, Just said there are reasons to believe cell phones may be especially distracting. “Talking on a cell phone has a special social demand, such that not attending to the cell conversation can be interpreted as rude, insulting behavior,” he noted. A passenger, by contrast, is likely to recognize increased demands on the driver’s attention and stop talking.

The 29 study volunteers used a driving simulator while inside an MRI brain scanner. They steered a car along a virtual winding road at a fixed, challenging speed, either while they were undisturbed, or while they were deciding whether a sentence they heard was true or false. Just’s team used state-of-the-art functional magnetic resonance imaging (fMRI) methods to measure activity in 20,000 brain locations, each about the size of a peppercorn. Measurements were made every second.

The driving-while-listening condition produced a 37 percent decrease in activity of the brain’s parietal lobe, which is associated with driving. This portion of the brain integrates sensory information and is critical for spatial sense and navigation. Activity was also reduced in the occipital lobe, which processes visual information.

The other impact of driving-while-listening was a significant deterioration in the quality of driving. Subjects who were listening committed more lane maintenance errors, such as hitting a simulated guardrail, and deviating from the middle of the lane. Both kinds of influences decrease the brain’s capacity to drive well, and that decrease can be costly when the margin for error is small.

“The clear implication is that engaging in a demanding conversation could jeopardize judgment and reaction time if an atypical or unusual driving situation arose,” Just said. “Heavy traffic is no place for an involved personal or business discussion, let alone texting.”

Because driving and listening draw on two different brain networks, scientists had previously suspected that the networks could work independently on each task. But Just said this study demonstrates that there is only so much that the brain can do at one time, no matter how different the two tasks are.

The study emerges from the new field of neuroergonomics, which combines brain science with human-computer interaction studies that measure how well a technology matches human capabilities. Neuroergonomics is beginning to be applied to the operation of vehicles like aircraft, ships and cars in which drivers now have navigation systems, iPods and even DVD players at their disposal. Every additional input to a driver consumes some of his or her brain capacity, taking away some of the resources that monitor for other vehicles, lane markers, obstacles, and sudden changes in conditions.

“Drivers’ seats in many vehicles are becoming highly instrumented cockpits,” Just said, “and during difficult driving situations, they require the undivided attention of the driver’s brain.”

Byron Spice | EurekAlert!
Further information:
http://www.cs.cmu.edu
http://www.ccbi.cmu.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>