Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon study shows just listening to cell phones significantly impairs drivers

07.03.2008
Brain imaging reveals drivers are distracted even if they don't talk

Carnegie Mellon University scientists have shown that just listening to a cell phone while driving is a significant distraction, and it causes drivers to commit some of the same types of driving errors that can occur under the influence of alcohol.

The use of cell phones, including dialing and texting, has long been a safety concern for drivers. But the Carnegie Mellon study, for the first time, used brain imaging to document that listening alone reduces by 37 percent the amount of brain activity associated with driving. This can cause drivers to weave out of their lane, based on the performance of subjects using a driving simulator.

The findings, to be reported in an upcoming issue of the journal Brain Research, show that making cell phones hands-free or voice-activated is not sufficient in eliminating distractions to drivers. “Drivers need to keep not only their hands on the wheel; they also have to keep their brains on the road,” said neuroscientist Marcel Just, director of the Center for Cognitive Brain Imaging.

Other distractions, such as eating, listening to the radio or talking with a passenger, also can divert a driver. Though it is not known how these activities compare to cell phone use, Just said there are reasons to believe cell phones may be especially distracting. “Talking on a cell phone has a special social demand, such that not attending to the cell conversation can be interpreted as rude, insulting behavior,” he noted. A passenger, by contrast, is likely to recognize increased demands on the driver’s attention and stop talking.

The 29 study volunteers used a driving simulator while inside an MRI brain scanner. They steered a car along a virtual winding road at a fixed, challenging speed, either while they were undisturbed, or while they were deciding whether a sentence they heard was true or false. Just’s team used state-of-the-art functional magnetic resonance imaging (fMRI) methods to measure activity in 20,000 brain locations, each about the size of a peppercorn. Measurements were made every second.

The driving-while-listening condition produced a 37 percent decrease in activity of the brain’s parietal lobe, which is associated with driving. This portion of the brain integrates sensory information and is critical for spatial sense and navigation. Activity was also reduced in the occipital lobe, which processes visual information.

The other impact of driving-while-listening was a significant deterioration in the quality of driving. Subjects who were listening committed more lane maintenance errors, such as hitting a simulated guardrail, and deviating from the middle of the lane. Both kinds of influences decrease the brain’s capacity to drive well, and that decrease can be costly when the margin for error is small.

“The clear implication is that engaging in a demanding conversation could jeopardize judgment and reaction time if an atypical or unusual driving situation arose,” Just said. “Heavy traffic is no place for an involved personal or business discussion, let alone texting.”

Because driving and listening draw on two different brain networks, scientists had previously suspected that the networks could work independently on each task. But Just said this study demonstrates that there is only so much that the brain can do at one time, no matter how different the two tasks are.

The study emerges from the new field of neuroergonomics, which combines brain science with human-computer interaction studies that measure how well a technology matches human capabilities. Neuroergonomics is beginning to be applied to the operation of vehicles like aircraft, ships and cars in which drivers now have navigation systems, iPods and even DVD players at their disposal. Every additional input to a driver consumes some of his or her brain capacity, taking away some of the resources that monitor for other vehicles, lane markers, obstacles, and sudden changes in conditions.

“Drivers’ seats in many vehicles are becoming highly instrumented cockpits,” Just said, “and during difficult driving situations, they require the undivided attention of the driver’s brain.”

Byron Spice | EurekAlert!
Further information:
http://www.cs.cmu.edu
http://www.ccbi.cmu.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>