Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study uncovers cause of flu epidemics

06.03.2008
The exchange of genetic material between two closely related strains of the influenza A virus may have caused the 1947 and 1951 human flu epidemics, according to biologists.

The findings could help explain why some strains cause major pandemics and others lead to seasonal epidemics. Until now, it was believed that while reassortment – when human influenza viruses swap genes with influenza viruses that infect birds – causes severe pandemics, such as the ‘Spanish’ flu of 1918, the ‘Asian’ flu of 1957, and the ‘Hong Kong’ flu of 1968, while viral mutation leads to regular influenza epidemics. But it has been a mystery why there are sometimes very severe epidemics – like the ones in 1947 and 1951 – that look and act like pandemics, even though no human-bird viral reassortment event occurred.

“There was a total vaccine failure in 1947. Researchers initially thought there was a problem in manufacturing the vaccine, but they later realized that the virus had undergone a tremendous evolutionary change,” said Martha Nelson, lead author and a graduate student in Penn State’s Department of Biology. “We now think that the 1947 virus did not just mutate a lot, but that this unusual virus was made through a reassortment event involving two human viruses.

“So we have found that the bipolar way of looking at influenza evolution is incorrect, and that reassortment can be an important driver of epidemic influenza as well as pandemic influenza,” said Nelson, whose team’s findings appear in the current issue of PLoS Pathogens. “We have discovered that you can also have reassortment between viruses that are much more similar, that human viruses can reassort with each other and not just with bird viruses. ”

Nelson and her colleagues analyzed the evolutionary patterns in the H1N1 strain of the influenza A viruses by looking at 71 whole-genome sequences sampled between 1918 and 2006 and representing 17 different countries on five continents.

Using the genome data, the researchers constructed phylogenetic trees representing evolutionary relationships across all eight genome segments of the virus.

Big differences in the shapes of these eight trees signified that reassortment events had occurred.

The swapping of genes between two closely related strains of the influenza A virus through reassortment may also have caused the 1951 epidemic, which looked and acted in many ways like a pandemic as well. Deaths in the United Kingdom and Canada from this epidemic exceeded those from the 1957 and 1968 pandemics.

Currently, there are many types of influenza virus that circulate only in birds, which are natural viral reservoirs. Though the viruses do not seem to cause severe disease symptoms in birds, so far three of these viral types have infected humans – H1N1, H2N2, and H3N2.

Understanding how each strain evolves over time is crucial. H3N2 is the dominant strain and evolves much more rapidly than H1N1. So the H1N1 component of each year’s flu vaccine has to be updated less often. In comparison, the H3N2 component of the vaccine has been changed four times over the past seven years.

“Last year the infections were dominated by H1N1 but we had no way of predicting it,” said Nelson. “This year the vaccine failure is due to the H3N2 mismatch because researchers picked the wrong strain.”

The H1N1 virus is particularly unusual because it disappeared completely in 1957, only to mysteriously re-emerge in humans in 1977 in exactly the same form in which it had left. It is still not certain what happened to the virus during its disappearance. But since it did not evolve at all over these twenty years, “the only plausible explanation is that it was some kind of a lab escape,” says Nelson, who is also affiliated with Penn State’s Center for Infectious Disease Dynamics (CIDD).

In recent decades, flu infections in the United States have been dominated by yet another reassorted viral strain known as H3N2. This strain caused the Hong Kong flu pandemic of 1968, which killed nearly a million people.

The Penn State researcher says the study shows that the evolution of a virus is not limited to the mutation of single lineage, and that there are multiple strains co-circulating and exchanging genetic material. The H1N1 and H3N2 strains, for instance, are occasionally generating hybrid H1N2 viruses.

“If we really want effective vaccines each year, our surveillance has to be much broader than simply looking at one lineage and its evolution, and trying to figure out how it is going to evolve by mutation,” said Nelson. “You have to look at a much bigger picture.”

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>