Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The myth of runner's high revisited with brain imaging

04.03.2008
For the first time scientists demonstrate in long-distance runners the release of endorphins in the brain

Throughout the world, amateurs, experts and the media agree that prolonged jogging raises people's spirits. And many believe that the body’s own opioids, so called endorphins, are the cause of this.

But in fact this has never been proved until now. Researchers at the Technische Universität München and the University of Bonn succeeded to demonstrate the existence of an ‘endorphin driven runner’s high’. In an imaging study they were able to show, for the first time, increased release of endorphins in certain areas of the athletes' brains during a two-hour jogging session.

Their results are also relevant for patients suffering from chronic pain, because the body’s own opiates are produced in areas of the brain which are involved in the suppression of pain. The researchers, some of whom are also members of the German Research Network of Neuropathic Pain (Deutscher Forschungsverbund Neuropathischer Schmerz, DFNS), which is also funded by the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF), thereby show that jogging not only makes you high, but can also relieve pain. The results of the study have now been published in the scientific journal 'Cerebral Cortex'.

Runner's high

Endurance sports have long been seen as reducing stress, relieving anxiety, enhancing mood and decreasing the perception of pain. The high that accompanies jogging even led to the creation of its own term, ‘runner's high’. Yet the cause of these positive effects on the senses was not clear until now. The most popular theory was and still is the 'Endorphin Hypothesis', which claimed that there was increased production of the body’s own opioids in the brain. However, since until now direct proof of this theory could not be provided; for technical reasons, it was a constant source of controversial discussions in scientific circles. The result was that the myth of 'runner's high through endorphins' lived on.

Scientists confirm the endorphin hypothesis for the first time

Scientists from the fields of Nuclear Medicine, Neurology and Anaesthesia at the Technische Universität München (TUM) and the University of Bonn have now subjected the endorphin theory to closer scrutiny. Ten athletes were scanned before and after a two-hour long-distance run using an imaging technique called positron emission tomography (PET). For this they used the radioactive substance [18F]diprenorphine ([18F]FDPN), which binds to the opiate receptors in the brain and hence competes with endorphins. 'The more endorphins are produced in the athlete’s brain, the more opiate receptors are blocked,' says Professor Henning Boecker, who coordinated the research at TUM and who is now in charge of the ‘Functional Neuroimaging Group’ at the Dept. of Radiology, University Hospital Bonn. And further: 'Respectively the opioid receptor binding of the [18F]FDPN decreases, since there is a direct competition between endorphins in the brain and the injected ligand'. By comparing the images before and after two hours of long distance running the study could demonstrate a significantly decreased binding of the [18F]FDPN-ligand. This is a strong argument in favour of an increased production of the body’s own opioids while doing long-distance running. 'We could validate for the first time an endorphin driven runner’s high and identify the affected brain areas', states Boecker. 'It’s interesting to see that the affected brain areas were preferentially located in prefrontal and limbic brain regions which are known to play a key role in emotional processing. Moreover, we observed a significant increase of the euphoria and happiness ratings compared to the ratings before the running exercise.' Professor Thomas Tölle, who for several years has been head of a research group called ‘Functional Imaging of Pain’ at TU Munich, adds: 'Our evaluations show that the more intensively the high is experienced, the lower the binding of [18F]FDPN was in the PET scan. And this means that the ratings of euphoria and happiness correlated directly with the release of the endorphins.' In addition, as a spokesman of the ‘German Association of Neuropathic Pain’, he feels happy for patients suffering from chronic pain. 'The fact that the endorphins are also released in areas of the brain that are at the centre of the suppression of pain was not quite unexpected, but even this proof was missing. Now we hope that these images will also impress our pain patients and will motivate them to take up sports training within their available limits.'

Running down the pain?

It is well known that endorphins facilitate the body's own pain suppression by influencing the way the body passes on pain and processes it in the nervous system and brain. The increased production of endorphins resulting from long-distance running could also serve as the body’s own pain-killer, a therapeutic option which is not only of interest to the German Association of Neuropathic Pain. 'Now we are very curious about the results of an imaging study using Functional Magnetic Resonance Imaging which we are currently carrying out in Bonn in order to investigate the influence of long-distance running on the processing of pain directly,' Professor Boecker says. Further research is required so as to investigate the exact effects on depression and states of anxiety but also on possible aspects which may promote addiction. That is why the relation between genetic disposition and opiate receptor distribution in the brain is being currently investigated at TU Munich. 'A scary thought,' Thomas Tölle comments, 'if we ran because our genes wanted us to do so.' The first step towards researching these connections has now been made.

Dr. Henning Boecker | EurekAlert!
Further information:
http://www.ukb.uni-bonn.de

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>