Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Head injuries result in widespread brain tissue loss one year later

04.03.2008
May provide important clue to why patients are left with behavioral handicaps

In a rare, large-scale study of traumatic brain injury (TBI) patients who span the full range of severity from mild to moderate and severe, Canadian researchers have found that the more severe the injury, the greater the loss of brain tissue, particularly white matter.

“This is an important finding as TBI is one of the most common forms of disability,” said Dr. Brian Levine, Senior Scientist at Baycrest’s Rotman Research Institute and lead author of the study which is published in the March 4, 2008 issue of Neurology, the medical journal of the American Academy of Neurology.

TBI causes both localized damage through bruises or bleeds, as well as more diffuse damage through disconnection of brain cells, which ultimately causes cell death. The localized damage is easier to detect with the naked eye than diffuse damage. Yet both kinds of damage contribute to difficulties with concentration, working memory, organizing and planning (vital skills for holding a job), and mood changes often experienced by people following TBI.

According to Dr. Levine, “It can be hard to determine why patients are so disabled, and this study offers a clue to the nature of the brain damage causing this disability.”

In the study, 69 TBI patients were recruited from Sunnybrook Health Sciences Centre, Canada’s largest trauma centre, one year after injury. Eighty percent of the patients sustained their injury from a motor vehicle accident. Injury severity was determined by the depth of coma or consciousness alteration at the time of the initial hospitalization. Some patients had minor injuries and were discharged immediately, whereas others had more severe injuries with extended loss of consciousness lasting weeks. Twelve healthy, non-injured participants were recruited as the comparison group.

Subjects’ brains were scanned with high resolution magnetic resonance imaging (MRI) which provides the most sensitive picture of volume changes in the brain. In addition to using an expert radiologist’s qualitative reading of the MRI scans, which is the standard approach used in hospitals and clinics, the researchers processed the images with a computer program that quantified volumes in 38 brain regions.

The computerized analysis revealed widespread brain tissue loss that was closely related to the severity of the TBI sustained one year earlier. “We were surprised at the extent of volume loss, which encompassed both frontal and posterior brain regions,” said Dr. Levine. Brain tissue loss was greatest in the white matter (containing axons which can be compared to telephone wire interconnectivity), but also involved grey matter (containing the cell bodies important for information processing).

Investigators were surprised to find that volume loss was widespread even in TBI patients who had no obvious lesions on their MRI scans. Even the mild TBI group contributed to the pattern of volumetric changes such that this group was reliably differentiated from the non-injured, healthy group.

“A significant blow to the head causing loss of consciousness can cause extensive reduction of brain tissue volume that may evade detection by traditional qualitative radiological examination,” Dr. Levine noted.

He is leading follow-up studies on the same group of TBI patients to examine more closely the significance of localized white and grey matter volume loss on behaviour.

Kelly Connelly | EurekAlert!
Further information:
http://www.baycrest.org

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>