Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study of targeted therapies for breast cancer -- model for global clinical trials

03.03.2008
Two targeted medications designed to treat an aggressive form of breast cancer are being tested in a new study involving 8,000 participants in 50 countries across six continents -- a clinical trial that investigators hope will provide a new model for global cancer research.

This trial, dubbed ALTTO (Adjuvant Lapatinib and/or Trastuzumab Treatment Optimization study), will be one of the first global initiatives in which two large, academic breast cancer research networks covering different parts of the world have jointly developed a study in which all care and data collection are standardized, regardless of where patients are treated.

The networks are The Breast Cancer Intergroup of North America (TBCI), based in the United States, and the Breast International Group (BIG) in Brussels, Belgium. TBCI consists of six National Cancer Institute (NCI)-funded clinical trials cooperative groups. NCI is part of the National Institutes of Health.

ALTTO is designed to answer the most pressing questions regarding use of two widely used cancer agents: whether one agent is more effective, which agent is safer for patients, and what benefit will be derived by taking the drugs separately, in tandem order, or together" The trial is a randomized, Phase III study, which is considered a gold standard method for proving drug effectiveness.

The two agents tested in ALTTO are drugs designed to treat HER2-positive tumors, which is a particularly aggressive form of cancer that affects approximately 20 percent to 25 percent of breast cancer patients. Both agents, trastuzumab (Herceptin) and lapatinib (Tykerb), have already been approved by the U.S. Food and Drug Administration for use for treatment of HER2-positive breast cancer. ALTTO will provide the first head-to-head comparison of trastuzumab and lapatinib in the earliest, most treatable stages of cancer. It will also be one of the first large-scale studies to evaluate lapatinib’s effectiveness in treating early breast cancer.

HER2-positive breast cancer is caused by an excess of HER2 genes or by over-production of its protein, the HER2 cell surface receptor. Trastuzumab consists of large antibodies that once injected into patients, latch on to the portion of the HER2 protein that sits on the outer surface of the cancer cell whereas lapatinib acts by entering a cancer cell and binding to the part of the HER2 protein that lies beneath the surface of the cell.

The trial is unusual in that it has two different designs depending on whether patients with stage I or stage II breast cancer have already been treated with chemotherapy. The study thus will compare four different regimens of targeted therapy administered over a 52-week period. Patients will be randomized to receive either trastuzumab or lapatinib alone, or trastuzumab followed by lapatinib, or the two treatments in combination.

“There have been major improvements in the management of patients with early breast cancer in the last few years, so this new study builds on this knowledge and sets an example of the new era: good science, good worldwide collaboration,” said Edith Perez, M.D., an oncologist in the North Central Cancer Treatment Group (NCCTG) at Mayo Clinic in Jacksonville, Fla., who will lead the study for TBCI. “It may be that using two treatments that work in different ways against HER2-positive breast cancer offers a complementary strategy that is more powerful than either drug alone.”

ALTTO will be one of the first trials of its scope in which translational research -- taking science from bench to bedside -- plays a critical role, investigators say. In ALTTO, biological material will be collected from thousands of patients in order to determine a tumor profile that responds best to the drugs -- information that could lead to individualized patient care and, possibly, to development of next generation agents.

“The difference between this study and many that came before it is that the collection of biological materials occurs as the trial is being conducted, not as an afterthought. While there are exceptions, not many companies or organizations have been willing to invest in that kind of research before,” said Martine J. Piccart, M.D., Ph.D., professor of oncology at the Université Libre de Bruxelles, Belgium, and lead investigator for BIG, which she founded in 1996. “Now we have the chance to optimize therapy with powerful drugs in order to provide the best treatment possible for each of our patients.”

Perez and Piccart led the development team of the ALTTO trial and will act as the study’s co-principal investigators. On behalf of BIG and TBCI, these two lead investigators have been working toward collaborative clinical studies for a number of years. The ALTTO study, they say, represents a new paradigm that blends the high standards of both systems in order to test the latest breast cancer treatments as efficiently as possible in thousands of women worldwide.

"The NCI greatly appreciates the work that Mayo Clinic, TBCI and BIG are doing to help advance our understanding of the complex mechanisms that underlie different types of breast cancer,” said Jo Anne Zujewski, M.D., a senior investigator in the clinical investigations branch at NCI. “We hope that this model of international collaboration is one which we can build upon in the future."

Lapatinib, in combination with the chemotherapy drug capecitabine, was approved by the U.S. Food and Drug Administration in March 2007 for the treatment of advanced or metastatic HER2-positive breast cancer in patients who had received prior therapy with three agents -- an anthracycline, a taxane and Herceptin. GlaxoSmithKline is providing the study drug, as well as additional financial support for the ALTTO trial. All drugs carry potential side effects, and more information of side effects for lapatinib and trastuzumab can be found in the Q&A at http://www.cancer.gov/newscenter/pressreleases/ALTTOQandA. NCI and GSK also provided comment and input on the design of the study.

NCCTG will act as the treatment base for ALTTO in North America. BIG is a network of 41 non-U.S. research groups from around the world. Its Brussels-based BrEAST Data Center is providing centralized data management for the global study (including the United States). The other members of TBCI include the Eastern Cooperative Oncology Group (ECOG), the Cancer and Leukemia Group B (CALGB), the Southwest Oncology Group (SWOG), the American College of Surgeons Oncology Group (ACOSOG), and the National Cancer Institute of Canada Clinical Trials Group (NCIC CTG).

To date, more than 300 centers around the world have enrolled patients into ALTTO. Full enrollment is expected to involve about 500 centers in the United States and more than 800 centers in Europe and the rest of the world. A complete listing of ALTTO participating sites can be found by searching for ALTTO at http://clinicaltrials.gov.

NCI Press Officers | EurekAlert!
Further information:
http://www.nih.gov
http://clinicaltrials.gov

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>